Numerical solution for a nonlinear obstacle problem
Journal of nonlinear sciences and its applications, Tome 11 (2018) no. 12, p. 1302-1312.

Voir la notice de l'article provenant de la source International Scientific Research Publications

A monotone iterations algorithm combined with the finite difference method is constructed for an obstacle problem with semilinear elliptic partial differential equations of second order. By means of Dirac delta function to improve the computation procedure of the discretization, the finite difference method is still practicable even though the obstacle boundary is irregular. The numerical simulations show that our proposed methods are feasible and effective for the nonlinear obstacle problem.
DOI : 10.22436/jnsa.011.12.02
Classification : 35J87, 35J61
Keywords: Finite difference method, nonlinear obstacle problem, variational inequality, elliptic partial differential equation

Rao, Ling 1 ; Chang, Shih-Sen  2

1 Department of Mathematics, Nanjing University of Science and Technology, Nanjing, China
2 Center for General Educatin, China Medical University, Taichung, 40402,, Taiwan
@article{JNSA_2018_11_12_a1,
     author = { Rao, Ling and Chang, Shih-Sen },
     title = {Numerical solution for a nonlinear   obstacle  problem},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {1302-1312},
     publisher = {mathdoc},
     volume = {11},
     number = {12},
     year = {2018},
     doi = {10.22436/jnsa.011.12.02},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.12.02/}
}
TY  - JOUR
AU  -  Rao, Ling
AU  - Chang, Shih-Sen 
TI  - Numerical solution for a nonlinear   obstacle  problem
JO  - Journal of nonlinear sciences and its applications
PY  - 2018
SP  - 1302
EP  - 1312
VL  - 11
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.12.02/
DO  - 10.22436/jnsa.011.12.02
LA  - en
ID  - JNSA_2018_11_12_a1
ER  - 
%0 Journal Article
%A  Rao, Ling
%A Chang, Shih-Sen 
%T Numerical solution for a nonlinear   obstacle  problem
%J Journal of nonlinear sciences and its applications
%D 2018
%P 1302-1312
%V 11
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.12.02/
%R 10.22436/jnsa.011.12.02
%G en
%F JNSA_2018_11_12_a1
 Rao, Ling; Chang, Shih-Sen . Numerical solution for a nonlinear   obstacle  problem. Journal of nonlinear sciences and its applications, Tome 11 (2018) no. 12, p. 1302-1312. doi : 10.22436/jnsa.011.12.02. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.12.02/

[1] Boffi, D.; Gastaldi, L. A finite element approach for the immersed boundary method, Comput. Structures, Volume 81 (2003), pp. 491-501 | DOI

[2] Chan, H.-F.; Fan, C.-M.; Kuo, C.-W. Generalized finite difference method for solving two-dimensional non-linear obstacle problems, Eng. Anal. Bound. Elem., Volume 37 (2013), pp. 1189-1196 | Zbl | DOI

[3] Enriquez-Remigio, S. A.; Roma, A. M. Incompressible flows in elastic domains: an immersed boundary method approach, Appl. Math. Model., Volume 29 (2005), pp. 35-54 | Zbl | DOI

[4] Glowinski, R.; Lions, J.-L.; Tremolieres, R. Numerical analysis of variational inequalities , North-Holland Publishing Co., Amsterdam-New York, 1976

[5] Glowinski, R.; Pan, T.-W.; Periaux, J. A fictitious domain method for Dirichlet problem and applications, Comput. Methods Appl. Mech. Engrg., Volume 111 (1994), pp. 283-303 | DOI

[6] Korman, P.; Leung, A. W.; Stojanovic, S. Monotone iterations for nonlinear obstacle problem, J. Austral. Math. Soc. Ser. B, Volume 31 (1990), pp. 259-276 | DOI | Zbl

[7] Peskin, C. S. Numerical analysis of blood flow in the heart, J. Computational Phys., Volume 25 (1977), pp. 220-252 | DOI

[8] Peskin, C. S. The immersed boundary method, Acta Numer., Volume 11 (2002), pp. 479-517 | DOI

[9] Rao, L.; Chen, H. Q. The technique of the immersed boundary method: application to solving shape optimization problem, J. Appl. Math. Phy., Volume 5 (2017), pp. 329-340 | DOI

[10] Saulev, V. K. On the solution of some boundary value problems on high performance computers by fictitious domain method, Siberian Math. J., Volume 4 (1963), pp. 912-925

[11] Silva, A. L. F. L. E.; Silveira-Neto, A.; J. J. R. Damasceno Numerical simulation of two-dimensional flows over a circular cylinder using the immersed boundary method, J. Computational Phys., Volume 189 (2003), pp. 351-370 | DOI | Zbl

Cité par Sources :