Voir la notice de l'article provenant de la source International Scientific Research Publications
Rao, Ling 1 ; Chang, Shih-Sen  2
@article{JNSA_2018_11_12_a1, author = { Rao, Ling and Chang, Shih-Sen }, title = {Numerical solution for a nonlinear obstacle problem}, journal = {Journal of nonlinear sciences and its applications}, pages = {1302-1312}, publisher = {mathdoc}, volume = {11}, number = {12}, year = {2018}, doi = {10.22436/jnsa.011.12.02}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.12.02/} }
TY - JOUR AU - Rao, Ling AU - Chang, Shih-Sen TI - Numerical solution for a nonlinear obstacle problem JO - Journal of nonlinear sciences and its applications PY - 2018 SP - 1302 EP - 1312 VL - 11 IS - 12 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.12.02/ DO - 10.22436/jnsa.011.12.02 LA - en ID - JNSA_2018_11_12_a1 ER -
%0 Journal Article %A Rao, Ling %A Chang, Shih-Sen %T Numerical solution for a nonlinear obstacle problem %J Journal of nonlinear sciences and its applications %D 2018 %P 1302-1312 %V 11 %N 12 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.12.02/ %R 10.22436/jnsa.011.12.02 %G en %F JNSA_2018_11_12_a1
Rao, Ling; Chang, Shih-Sen . Numerical solution for a nonlinear obstacle problem. Journal of nonlinear sciences and its applications, Tome 11 (2018) no. 12, p. 1302-1312. doi : 10.22436/jnsa.011.12.02. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.12.02/
[1] A finite element approach for the immersed boundary method, Comput. Structures, Volume 81 (2003), pp. 491-501 | DOI
[2] Generalized finite difference method for solving two-dimensional non-linear obstacle problems, Eng. Anal. Bound. Elem., Volume 37 (2013), pp. 1189-1196 | Zbl | DOI
[3] Incompressible flows in elastic domains: an immersed boundary method approach, Appl. Math. Model., Volume 29 (2005), pp. 35-54 | Zbl | DOI
[4] Numerical analysis of variational inequalities , North-Holland Publishing Co., Amsterdam-New York, 1976
[5] A fictitious domain method for Dirichlet problem and applications, Comput. Methods Appl. Mech. Engrg., Volume 111 (1994), pp. 283-303 | DOI
[6] Monotone iterations for nonlinear obstacle problem, J. Austral. Math. Soc. Ser. B, Volume 31 (1990), pp. 259-276 | DOI | Zbl
[7] Numerical analysis of blood flow in the heart, J. Computational Phys., Volume 25 (1977), pp. 220-252 | DOI
[8] The immersed boundary method, Acta Numer., Volume 11 (2002), pp. 479-517 | DOI
[9] The technique of the immersed boundary method: application to solving shape optimization problem, J. Appl. Math. Phy., Volume 5 (2017), pp. 329-340 | DOI
[10] On the solution of some boundary value problems on high performance computers by fictitious domain method, Siberian Math. J., Volume 4 (1963), pp. 912-925
[11] Numerical simulation of two-dimensional flows over a circular cylinder using the immersed boundary method, J. Computational Phys., Volume 189 (2003), pp. 351-370 | DOI | Zbl
Cité par Sources :