Voir la notice de l'article provenant de la source International Scientific Research Publications
Syam, Muhammed  1 ; Al-Subaihi, Ibrahim  2
@article{JNSA_2018_11_11_a7, author = {Syam, Muhammed and Al-Subaihi, Ibrahim }, title = {An accurate numerical method for solving the generalized time-fractional diffusion equation}, journal = {Journal of nonlinear sciences and its applications}, pages = {1282-1293}, publisher = {mathdoc}, volume = {11}, number = {11}, year = {2018}, doi = {10.22436/jnsa.011.11.08}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.11.08/} }
TY - JOUR AU - Syam, Muhammed AU - Al-Subaihi, Ibrahim TI - An accurate numerical method for solving the generalized time-fractional diffusion equation JO - Journal of nonlinear sciences and its applications PY - 2018 SP - 1282 EP - 1293 VL - 11 IS - 11 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.11.08/ DO - 10.22436/jnsa.011.11.08 LA - en ID - JNSA_2018_11_11_a7 ER -
%0 Journal Article %A Syam, Muhammed %A Al-Subaihi, Ibrahim %T An accurate numerical method for solving the generalized time-fractional diffusion equation %J Journal of nonlinear sciences and its applications %D 2018 %P 1282-1293 %V 11 %N 11 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.11.08/ %R 10.22436/jnsa.011.11.08 %G en %F JNSA_2018_11_11_a7
Syam, Muhammed ; Al-Subaihi, Ibrahim . An accurate numerical method for solving the generalized time-fractional diffusion equation. Journal of nonlinear sciences and its applications, Tome 11 (2018) no. 11, p. 1282-1293. doi : 10.22436/jnsa.011.11.08. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.11.08/
[1] An approximate solution for a fractional diffusion-equation using the decomposition method, Appl. Math. Compu., Volume 165 (2005), pp. 473-483 | DOI
[2] A collocation-shooting method for solving fractional boundary value problems, Commun. Nonlinear Sci. Numer. Simul., Volume 15 (2010), pp. 3814-3822 | Zbl | DOI
[3] Definition of physically consistent damping laws with fractional derivatives, Z. Angew. Math. Mech., Volume 75 (1995), pp. 623-635 | DOI | Zbl
[4] Solving fractional diffusion-wave equations using a new iterative method, Fract. Calc. Appl. Anal., Volume 11 (2008), pp. 193-202 | Zbl
[5] Solving multi-term linear and non-linear diffusion-wave equation of fractional order by Adomian decomposition method, Appl. Math. Comput., Volume 202 (2008), pp. 113-120 | DOI
[6] Approximate analytical solution for seepage flow with fractional derivatives in porous media , Comput. Methods Appl. Mech. Engrg., Volume 167 (1998), pp. 57-68 | DOI | Zbl
[7] Some applications of nonlinear fractional differential equations and their approximations, Bull. Sci. Technol., Volume 15 (1999), pp. 86-90
[8] The approximate and exact solutions of the space-and time-fractional Burger’s equations with initial conditions by the variational iteration method, J. Math. Anal. Appl., Volume 345 (2008), pp. 476-484 | DOI
[9] Solving linear and nonlinear fractional diffusion and wave equations by Adomian decomposition, Appl. Math. Comput., Volume 180 (2006), pp. 488-497 | DOI
[10] Fractional-order Legendre functions for solving fractional-order differential equations, Appl. Math. Model., Volume 37 (2013), pp. 5498-5510 | DOI
[11] An efficient numerical method for solving the fractional diffusion equation, J. Appl. Math. Bioinformatics, Volume 1 (2011), pp. 1-12
[12] Some uniqueness and existence results for the initial-boundary-value problems for the generalized time-fractional diffusion equation , Comput. Math. Appl., Volume 59 (2010), pp. 1766-1772 | Zbl | DOI
[13] Fractals and Fractional Calculus in continuum mechanics, Springer-Verlag, Volume 1997 (1997), pp. 291-348 | DOI
[14] The non-standard finite difference scheme for linear fractional PDEs in fluid mechanics, Comput. Math. Appl., Volume 61 (2011), pp. 1209-1216 | Zbl | DOI
[15] The variational iteration method: and efficient scheme for handling fractional partial differential equations in fluid mechanics , Comput. Math. Appli., Volume 58 (2009), pp. 2199-2208 | DOI
[16] Fractional Differential Equations , Academic Press, San Diego, 1999
[17] Legendre wavelets method for fractional integro-differential equations, Appl. Math. Sci. (Ruse), Volume 5 (2011), pp. 2467-2474
[18] Application of homotopy analysis method to fractional KdV-Burgers-Kuramoto equation, Phys. Lett. A, Volume 367 (2007), pp. 88-94 | DOI | Zbl
[19] Numerical studies for a multi-order fractional differential equation, Phys. Lett. A, Volume 371 (2007), pp. 26-33 | DOI | Zbl
[20] Positive solutions and monotone iterative sequences for a class of higher order boundary value problems, J. Fract. Calculus Appl., Volume 4 (2013), pp. 1-13
[21] Collocation-continuation technique for solving nonlinear ordinary boundary value problems , Comput. Math. Appl., Volume 37 (1999), pp. 11-17 | Zbl | DOI
[22] Tau-Path following method for solving the Riccati equation with fractional order, J. Comput. Methods Phys., Volume 2014 (2014), pp. 1-7 | Zbl
[23] Analytical approximations for a population growth model with fractional order, Commun. Nonlinear Sci. Numer. Sumultat., Volume 14 (2009), pp. 1978-1983 | Zbl | DOI
[24] An approximate solution of nonlinear fractional differential equation by Laplace transform and Adomian polynomials, J. Info. Comput. Sci., Volume 10 (2013), pp. 213-222
[25] Finite differnece method for solving the time fractional diffusion equation, Communications in Computer and Information Science (AsiaSim 2012), Volume 325 (2012), pp. 115-123 | DOI
Cité par Sources :