An accurate numerical method for solving the generalized time-fractional diffusion equation
Journal of nonlinear sciences and its applications, Tome 11 (2018) no. 11, p. 1282-1293.

Voir la notice de l'article provenant de la source International Scientific Research Publications

In this paper, a formulation for the fractional Legendre functions is constructed to solve a class of time-fractional diffusion equation. The fractional derivative is described in the Caputo sense. The method is based on the collection Legendre. Analysis for the presented method is given and numerical results are presented.
DOI : 10.22436/jnsa.011.11.08
Classification : 34A08, 34Bxx, 35J40, 47H10, 65L05
Keywords: Fractional-order Legendre function, collocation method, generalized time-fractional diffusion equation

Syam, Muhammed  1 ; Al-Subaihi, Ibrahim  2

1 Department of Mathematical Sciences, United Arab Emirates University, Al-Ain, UAE
2 Department of Mathematics, Taibah University, Al Madinah, Saudi Arabia
@article{JNSA_2018_11_11_a7,
     author = {Syam, Muhammed  and Al-Subaihi, Ibrahim },
     title = {An accurate numerical method for solving the generalized time-fractional diffusion equation},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {1282-1293},
     publisher = {mathdoc},
     volume = {11},
     number = {11},
     year = {2018},
     doi = {10.22436/jnsa.011.11.08},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.11.08/}
}
TY  - JOUR
AU  - Syam, Muhammed 
AU  - Al-Subaihi, Ibrahim 
TI  - An accurate numerical method for solving the generalized time-fractional diffusion equation
JO  - Journal of nonlinear sciences and its applications
PY  - 2018
SP  - 1282
EP  - 1293
VL  - 11
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.11.08/
DO  - 10.22436/jnsa.011.11.08
LA  - en
ID  - JNSA_2018_11_11_a7
ER  - 
%0 Journal Article
%A Syam, Muhammed 
%A Al-Subaihi, Ibrahim 
%T An accurate numerical method for solving the generalized time-fractional diffusion equation
%J Journal of nonlinear sciences and its applications
%D 2018
%P 1282-1293
%V 11
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.11.08/
%R 10.22436/jnsa.011.11.08
%G en
%F JNSA_2018_11_11_a7
Syam, Muhammed ; Al-Subaihi, Ibrahim . An accurate numerical method for solving the generalized time-fractional diffusion equation. Journal of nonlinear sciences and its applications, Tome 11 (2018) no. 11, p. 1282-1293. doi : 10.22436/jnsa.011.11.08. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.11.08/

[1] Al-Khaled, K.; S. Momani An approximate solution for a fractional diffusion-equation using the decomposition method, Appl. Math. Compu., Volume 165 (2005), pp. 473-483 | DOI

[2] Al-Mdallal, Q.; Syam, M.; Anwar, M. N. A collocation-shooting method for solving fractional boundary value problems, Commun. Nonlinear Sci. Numer. Simul., Volume 15 (2010), pp. 3814-3822 | Zbl | DOI

[3] Beyer, H.; Kempfle, S. Definition of physically consistent damping laws with fractional derivatives, Z. Angew. Math. Mech., Volume 75 (1995), pp. 623-635 | DOI | Zbl

[4] Daftardar-Gejji, V.; Bhalekar, S. Solving fractional diffusion-wave equations using a new iterative method, Fract. Calc. Appl. Anal., Volume 11 (2008), pp. 193-202 | Zbl

[5] Daftardar-Gejji, V.; Bhalekar, S. Solving multi-term linear and non-linear diffusion-wave equation of fractional order by Adomian decomposition method, Appl. Math. Comput., Volume 202 (2008), pp. 113-120 | DOI

[6] He, J.-H. Approximate analytical solution for seepage flow with fractional derivatives in porous media , Comput. Methods Appl. Mech. Engrg., Volume 167 (1998), pp. 57-68 | DOI | Zbl

[7] He, J.-H. Some applications of nonlinear fractional differential equations and their approximations, Bull. Sci. Technol., Volume 15 (1999), pp. 86-90

[8] Inc, M. The approximate and exact solutions of the space-and time-fractional Burger’s equations with initial conditions by the variational iteration method, J. Math. Anal. Appl., Volume 345 (2008), pp. 476-484 | DOI

[9] Jafari, H.; V. Daftardar-Gejji Solving linear and nonlinear fractional diffusion and wave equations by Adomian decomposition, Appl. Math. Comput., Volume 180 (2006), pp. 488-497 | DOI

[10] Kazem, S.; Abbasbandy, S.; Kumar, Sunil Fractional-order Legendre functions for solving fractional-order differential equations, Appl. Math. Model., Volume 37 (2013), pp. 5498-5510 | DOI

[11] Khader, M. M.; Sweilam, N. H.; Mahdy, A. M. S. An efficient numerical method for solving the fractional diffusion equation, J. Appl. Math. Bioinformatics, Volume 1 (2011), pp. 1-12

[12] Luchko, Y. Some uniqueness and existence results for the initial-boundary-value problems for the generalized time-fractional diffusion equation , Comput. Math. Appl., Volume 59 (2010), pp. 1766-1772 | Zbl | DOI

[13] Mainardi, F. Fractals and Fractional Calculus in continuum mechanics, Springer-Verlag, Volume 1997 (1997), pp. 291-348 | DOI

[14] Moaddy, K.; Momani, S.; Hashim, I. The non-standard finite difference scheme for linear fractional PDEs in fluid mechanics, Comput. Math. Appl., Volume 61 (2011), pp. 1209-1216 | Zbl | DOI

[15] Obidat, Z.; S. Momani The variational iteration method: and efficient scheme for handling fractional partial differential equations in fluid mechanics , Comput. Math. Appli., Volume 58 (2009), pp. 2199-2208 | DOI

[16] Podlubny, I. Fractional Differential Equations , Academic Press, San Diego, 1999

[17] E. A. Rawashdeh Legendre wavelets method for fractional integro-differential equations, Appl. Math. Sci. (Ruse), Volume 5 (2011), pp. 2467-2474

[18] Song, L.; Zhang, H. Application of homotopy analysis method to fractional KdV-Burgers-Kuramoto equation, Phys. Lett. A, Volume 367 (2007), pp. 88-94 | DOI | Zbl

[19] Sweilam, N. H.; Khader, M. M.; Al-Bar, R. F. Numerical studies for a multi-order fractional differential equation, Phys. Lett. A, Volume 371 (2007), pp. 26-33 | DOI | Zbl

[20] Syam, M.; Al-Refai, M. Positive solutions and monotone iterative sequences for a class of higher order boundary value problems, J. Fract. Calculus Appl., Volume 4 (2013), pp. 1-13

[21] Syam, M. I.; Al-Sharo, S. M. Collocation-continuation technique for solving nonlinear ordinary boundary value problems , Comput. Math. Appl., Volume 37 (1999), pp. 11-17 | Zbl | DOI

[22] Syam, M. I.; Siyyam, H.; Al-Subaihi, I. Tau-Path following method for solving the Riccati equation with fractional order, J. Comput. Methods Phys., Volume 2014 (2014), pp. 1-7 | Zbl

[23] Xu, H. Analytical approximations for a population growth model with fractional order, Commun. Nonlinear Sci. Numer. Sumultat., Volume 14 (2009), pp. 1978-1983 | Zbl | DOI

[24] Yang, C.; Hou, J. An approximate solution of nonlinear fractional differential equation by Laplace transform and Adomian polynomials, J. Info. Comput. Sci., Volume 10 (2013), pp. 213-222

[25] Zhang, Y.; H. Ding Finite differnece method for solving the time fractional diffusion equation, Communications in Computer and Information Science (AsiaSim 2012), Volume 325 (2012), pp. 115-123 | DOI

Cité par Sources :