Voir la notice de l'article provenant de la source International Scientific Research Publications
$ M_{d\mu}^n f(x)=\sup_{x\in R\in \mathcal{R}}\frac{1}{\mu(R)}\int_{R}|f(y)|d\mu(y),$ |
Ding, Wei  1
@article{JNSA_2018_11_11_a6, author = {Ding, Wei }, title = {The endpoint {Fefferman-Stein} inequality for the strong maximal function with respect to nondoubling measure}, journal = {Journal of nonlinear sciences and its applications}, pages = {1271-1281}, publisher = {mathdoc}, volume = {11}, number = {11}, year = {2018}, doi = {10.22436/jnsa.011.11.07}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.11.07/} }
TY - JOUR AU - Ding, Wei TI - The endpoint Fefferman-Stein inequality for the strong maximal function with respect to nondoubling measure JO - Journal of nonlinear sciences and its applications PY - 2018 SP - 1271 EP - 1281 VL - 11 IS - 11 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.11.07/ DO - 10.22436/jnsa.011.11.07 LA - en ID - JNSA_2018_11_11_a6 ER -
%0 Journal Article %A Ding, Wei %T The endpoint Fefferman-Stein inequality for the strong maximal function with respect to nondoubling measure %J Journal of nonlinear sciences and its applications %D 2018 %P 1271-1281 %V 11 %N 11 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.11.07/ %R 10.22436/jnsa.011.11.07 %G en %F JNSA_2018_11_11_a6
Ding, Wei . The endpoint Fefferman-Stein inequality for the strong maximal function with respect to nondoubling measure. Journal of nonlinear sciences and its applications, Tome 11 (2018) no. 11, p. 1271-1281. doi : 10.22436/jnsa.011.11.07. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.11.07/
[1] Maximal functions and rearrangements: some new proofs, Indiana Univ. Math. J., Volume 32 (1983), pp. 879-891 | Zbl | DOI
[2] Some recent developments in Fourier Analysis and \(H^p\) theory on product domains, Bull. Amer. Math. Soc., Volume 12 (1985), pp. 1-43 | DOI | Zbl
[3] Maximal functions, covering lemmas and Fourier multipliers, In: Harmonic Analysis in Euclidean Spaces (Proc. Sympos. Pure Math.), Volume 1979 (1979), pp. 29-50 | Zbl
[4] A geometric proof of the strong maximal theorem, Ann. Math. Second Series, Volume 102 (1975), pp. 95-100 | DOI
[5] A weighted norm inequality for singular integrals, Studia Math., Volume 57 (1976), pp. 97-101 | DOI
[6] Sharp two weight inequalities for singular integrals, with applications to the Hilbert transform and the Sarason conjecture, Adv. Math., Volume 216 (2007), pp. 647-676 | DOI | Zbl
[7] Boundedness of strong maximal functions with respect to non-doubling measures, J. Inequal. Appl., Volume 2016 (2016), pp. 1-14 | Zbl | DOI
[8] Some weighted norm inequalities for Cordoba’s maximal function, Amer. J. Math., Volume 106 (1984), pp. 1261-1264 | Zbl | DOI
[9] Strong differentiation with respect to measures, Amer. J. Math., Volume 103 (1981), pp. 33-40 | DOI
[10] Multiparameter operators and sharp weighted inequalites, Amer. J. Math., Volume 119 (1997), pp. 337-369 | DOI
[11] Some maximal inequalities, Amer. J. Math., Volume 93 (1971), pp. 107-115 | DOI
[12] Weighted norm inequalities and related topics, North-Holland Publishing Co., Amsterdam, 1985
[13] Classical Fourier Analysis , Springer-Verlag, New York, 2008 | DOI
[14] Calderón-Zygmund operators on product Hardy spaces, J. Fourier Anal., Volume 258 (2010), pp. 2834-2861 | DOI
[15] Hardy spaces associated with different homogeneities and boundedness of composition operators, Rev. Mat. Iberoam., Volume 29 (2013), pp. 1127-1157 | DOI
[16] The strong maximal function with respect to measures, Studia Math., Volume 80 (1984), pp. 261-285 | DOI
[17] Calderman-Zygmund operators on product spaces, Rev. Mat. Iberoam, Volume 1 (1985), pp. 55-92
[18] A note on a covering lemma of A. Cordoba and R. Fefferman, Chinese Ann. Math. Ser. B, Volume 9 (1988), pp. 283-291 | Zbl
[19] The endpoint Fefferman-Stein inequality for the strong maximal function, J. Fourier Anal., Volume 266 (2014), pp. 199-212 | Zbl | DOI
[20] BMO for nondoubling measures, Duke Math. J., Volume 102 (2000), pp. 533-565 | Zbl | DOI
[21] The weighted weak type inequality for the strong maximal function, J. Fourier Anal. Appl., Volume 12 (2006), pp. 645-652 | DOI
[22] Classical expansions and their relation to conjugate harmonic functions, Trans. Amer. Math. Soc., Volume 118 (1965), pp. 17-92 | DOI | Zbl
[23] Cauchy integral and Calderón-Zygmund operators on nonhomogeneous spaces, Internat. Math. Res. Notices, Volume 15 (1997), pp. 703-726 | Zbl | DOI
[24] The Bellman function and two weight inequalities for Haar multipliers, J. Amer. Math. Soc., Volume 12 (1999), pp. 909-928 | Zbl | DOI
[25] \(A_p\) weights for nondoubling measures in \(R^n\) and applications, Trans. Amer. Math. Soc., Volume 354 (2002), pp. 2013-2033 | DOI | Zbl
[26] A remark on weighted inequalities for general maximal operators, Proc. Amer. Math. Soc., Volume 119 (1993), pp. 1121-1126 | DOI | Zbl
[27] Weighted norm inequalities for general maximal operators, Publ. Mat., Volume 35 (1991), pp. 169-186 | DOI
[28] A characterization of a two weight norm inequality for maximal operators, Studia Math., Volume 75 (1982), pp. 1-11 | DOI
[29] A remark on maximal function for measures in \(R^n\), Amer. J. Math., Volume 105 (1983), pp. 1231-1233 | DOI
[30] Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals, Princeton University Press, Princeton, 1993
[31] BMO, \(H^1\) and Calderón-Zygmund operators for non doubling measures, Math. Ann., Volume 319 (2001), pp. 89-149 | DOI
Cité par Sources :