Symmetry Lie algebra and exact solutions of some fourth-order difference equations
Journal of nonlinear sciences and its applications, Tome 11 (2018) no. 11, p. 1262-1270.

Voir la notice de l'article provenant de la source International Scientific Research Publications

In this paper, all the Lie point symmetries of difference equations of the form
$ u_{n+4}=\frac{u_n}{A_n +B_nu_nu_{n+2}}, $
where, $(A_n)_{n \geq 0}$ and $(B_n)_{n \geq 0}$ are sequences of real numbers, are obtained. We perform reduction of order using the invariant of the group of transformations. Furthermore, we obtain their solutions. In particular, our work generalizes some results in the literature.
DOI : 10.22436/jnsa.011.11.06
Classification : 39A10, 39A99, 39A13
Keywords: Difference equation, symmetry, group invariant solutions

Mnguni, N.  1 ; Nyirenda, D.  1 ; Folly-Gbetoula, M.  1

1 School of Mathematics, University of the Witwatersrand, 2050, Johannesburg, South Africa
@article{JNSA_2018_11_11_a5,
     author = {Mnguni, N.  and Nyirenda, D.  and Folly-Gbetoula, M. },
     title = {Symmetry {Lie} algebra  and exact solutions of some fourth-order difference equations},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {1262-1270},
     publisher = {mathdoc},
     volume = {11},
     number = {11},
     year = {2018},
     doi = {10.22436/jnsa.011.11.06},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.11.06/}
}
TY  - JOUR
AU  - Mnguni, N. 
AU  - Nyirenda, D. 
AU  - Folly-Gbetoula, M. 
TI  - Symmetry Lie algebra  and exact solutions of some fourth-order difference equations
JO  - Journal of nonlinear sciences and its applications
PY  - 2018
SP  - 1262
EP  - 1270
VL  - 11
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.11.06/
DO  - 10.22436/jnsa.011.11.06
LA  - en
ID  - JNSA_2018_11_11_a5
ER  - 
%0 Journal Article
%A Mnguni, N. 
%A Nyirenda, D. 
%A Folly-Gbetoula, M. 
%T Symmetry Lie algebra  and exact solutions of some fourth-order difference equations
%J Journal of nonlinear sciences and its applications
%D 2018
%P 1262-1270
%V 11
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.11.06/
%R 10.22436/jnsa.011.11.06
%G en
%F JNSA_2018_11_11_a5
Mnguni, N. ; Nyirenda, D. ; Folly-Gbetoula, M. . Symmetry Lie algebra  and exact solutions of some fourth-order difference equations. Journal of nonlinear sciences and its applications, Tome 11 (2018) no. 11, p. 1262-1270. doi : 10.22436/jnsa.011.11.06. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.11.06/

[1] M. Aloqeli Dynamics of a rational difference equation, Appl. Math. Comput., Volume 176 (2006), pp. 768-774 | DOI

[2] C. Cinar On the Positive Solutions of the Difference Equation \(x_{n+1} = ax_{n-1}/(1 + bx_nx_{n-1})\), Appl. Math. Comput., Volume 156 (2004), pp. 587-590 | DOI

[3] Cinar, C. On the Positive Solutions of the Difference Equation \(x_{n+1} = x_{n-1}/(1 + x_nx_{n-1})\), Appl. Math. Comput., Volume 150 (2004), pp. 21-24 | DOI

[4] C. Cinar On the Positive Solutions of the Difference Equation \(x_{n+1} = x_{n-1}/(-1 + x_nx_{n-1})\), Appl. Math. Comput., Volume 158 (2004), pp. 813-816 | DOI

[5] C. Cinar On the Positive Solutions of the Difference Equation \(x_{n+1} = x_{n-1}/(-1 + ax_nx_{n-1})\), Appl. Math. Comput., Volume 158 (2004), pp. 793-797 | DOI

[6] Cinar, C. On the Positive Solutions of the Difference Equation \(x_{n+1}= x_{n-1}/(1 + ax_nx_{n-1})\) , Appl. Math. Comput., Volume 158 (2004), pp. 809-812 | DOI

[7] Elsayed, E. M. On the Difference Equation \(x_{n-5}/(-1+x_{n-2}x_{n-5})\), Int. J. Contemp. Math. Sci., Volume 33 (2008), pp. 1657-1664

[8] Elsayed, E. M. On the solutions and periodic nature of some systems of difference equations, Int. J. Biomath, Volume 7 (2014), pp. 1-26 | DOI

[9] Elsayed, E. M. On the Solution of Some Difference Equations, Eur. J. Pure Appl. Math., Volume 3 (2011), pp. 287-303

[10] Elsayed, E. M. Solutions of Rational Difference System of Order Two, Math. Comput. Modelling, Volume 55 (2012), pp. 378-384 | DOI

[11] Elsayed, E. M. Solution and Attractivity for a Rational Recursive Sequence, Discrete Dyn. Nat. Soc., Volume 2011 (2011), pp. 1-17 | Zbl

[12] Feng, G.; Yang, X. J.; Srivasta, H. M. Exact traveling-wave solutions for linear and nonlinear heat-transfer equations, Thermal Science, Volume 21 (2017), pp. 2307-2311 | DOI

[13] M. Folly-Gbetoula Symmetry, reductions and exact solutions of the difference equation \(u_{n+2} = (au_n)/(1 + bu_nu_{n+1})\), J. Difference Equ. Appl., Volume 23 (2017), pp. 1017-1024 | Zbl | DOI

[14] Folly-Gbetoula, M.; A. H. Kara Symmetries, conservation laws, and Integrability of Difference Equations, Adv. Difference Equ., Volume 2014 (2014), pp. 1-14 | DOI

[15] Folly-Gbetoula, M.; Kara, A. H. The invariance, Conservation laws and Integration of some Higher-order Difference Equations, Advances and Applications in Discrete Mathematics, Volume 18 (2017), pp. 71-86 | Zbl | DOI

[16] P. E. Hydon Difference Equations by Differential Equation Methods, Cambridge University Press, Cambridge, 2014 | DOI

[17] Y. Ibrahim On the Global Attractivity of Positive Solutions of a Rational Difference Equation , Selcuk J. Appl. Math., Volume 9 (2008), pp. 3-8

[18] Ibrahim, T. F. On the Third Order Rational Difference Equation \(x_{n+1} = x_nx_{n-2}/x_{n-1}(a+bx_nx_{n-2})\), Int. J. Contemp. Math. Sci., Volume 27 (2009), pp. 1321-1334

[19] Levi, D.; Vinet, L.; Winternitz, P. Lie group Formalism for Difference Equations , J. Phys. A, Volume 30 (1997), pp. 633-649 | DOI

[20] Quispel, G. R. W.; R. Sahadevan Lie Symmetries and the Integration of Difference Equations, Phys. Lett. A, Volume 184 (1993), pp. 64-70 | DOI

[21] Yang, X. J.; Gao, F.; Srivasta, H. M. Exact travelling wave solutions for local fractional two-dimensional Burgers-type equations, Comput. Math. Appl., Volume 26 (2017), pp. 203-210 | Zbl | DOI

[22] Yang, X. J.; Machado, J. A. T.; Baleanu, D. Exact traveling-wave solution for local fractional Boussinesq equation in fractal domain, Fractals, Volume 25 (2017), pp. 1-7 | DOI

[23] Yang, X. J.; Machado, J. A. T.; Baleanu, D.; Cattani, C. On exact traveling-wave solutions for local fractional Korteweg-de Vries equation, Chaos, Volume 26 (2016), pp. 1-5 | DOI | Zbl

Cité par Sources :