Voir la notice de l'article provenant de la source International Scientific Research Publications
$ u_{n+4}=\frac{u_n}{A_n +B_nu_nu_{n+2}}, $ |
Mnguni, N.  1 ; Nyirenda, D.  1 ; Folly-Gbetoula, M.  1
@article{JNSA_2018_11_11_a5, author = {Mnguni, N. and Nyirenda, D. and Folly-Gbetoula, M. }, title = {Symmetry {Lie} algebra and exact solutions of some fourth-order difference equations}, journal = {Journal of nonlinear sciences and its applications}, pages = {1262-1270}, publisher = {mathdoc}, volume = {11}, number = {11}, year = {2018}, doi = {10.22436/jnsa.011.11.06}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.11.06/} }
TY - JOUR AU - Mnguni, N. AU - Nyirenda, D. AU - Folly-Gbetoula, M. TI - Symmetry Lie algebra and exact solutions of some fourth-order difference equations JO - Journal of nonlinear sciences and its applications PY - 2018 SP - 1262 EP - 1270 VL - 11 IS - 11 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.11.06/ DO - 10.22436/jnsa.011.11.06 LA - en ID - JNSA_2018_11_11_a5 ER -
%0 Journal Article %A Mnguni, N. %A Nyirenda, D. %A Folly-Gbetoula, M. %T Symmetry Lie algebra and exact solutions of some fourth-order difference equations %J Journal of nonlinear sciences and its applications %D 2018 %P 1262-1270 %V 11 %N 11 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.11.06/ %R 10.22436/jnsa.011.11.06 %G en %F JNSA_2018_11_11_a5
Mnguni, N. ; Nyirenda, D. ; Folly-Gbetoula, M. . Symmetry Lie algebra and exact solutions of some fourth-order difference equations. Journal of nonlinear sciences and its applications, Tome 11 (2018) no. 11, p. 1262-1270. doi : 10.22436/jnsa.011.11.06. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.11.06/
[1] Dynamics of a rational difference equation, Appl. Math. Comput., Volume 176 (2006), pp. 768-774 | DOI
[2] On the Positive Solutions of the Difference Equation \(x_{n+1} = ax_{n-1}/(1 + bx_nx_{n-1})\), Appl. Math. Comput., Volume 156 (2004), pp. 587-590 | DOI
[3] On the Positive Solutions of the Difference Equation \(x_{n+1} = x_{n-1}/(1 + x_nx_{n-1})\), Appl. Math. Comput., Volume 150 (2004), pp. 21-24 | DOI
[4] On the Positive Solutions of the Difference Equation \(x_{n+1} = x_{n-1}/(-1 + x_nx_{n-1})\), Appl. Math. Comput., Volume 158 (2004), pp. 813-816 | DOI
[5] On the Positive Solutions of the Difference Equation \(x_{n+1} = x_{n-1}/(-1 + ax_nx_{n-1})\), Appl. Math. Comput., Volume 158 (2004), pp. 793-797 | DOI
[6] On the Positive Solutions of the Difference Equation \(x_{n+1}= x_{n-1}/(1 + ax_nx_{n-1})\) , Appl. Math. Comput., Volume 158 (2004), pp. 809-812 | DOI
[7] On the Difference Equation \(x_{n-5}/(-1+x_{n-2}x_{n-5})\), Int. J. Contemp. Math. Sci., Volume 33 (2008), pp. 1657-1664
[8] On the solutions and periodic nature of some systems of difference equations, Int. J. Biomath, Volume 7 (2014), pp. 1-26 | DOI
[9] On the Solution of Some Difference Equations, Eur. J. Pure Appl. Math., Volume 3 (2011), pp. 287-303
[10] Solutions of Rational Difference System of Order Two, Math. Comput. Modelling, Volume 55 (2012), pp. 378-384 | DOI
[11] Solution and Attractivity for a Rational Recursive Sequence, Discrete Dyn. Nat. Soc., Volume 2011 (2011), pp. 1-17 | Zbl
[12] Exact traveling-wave solutions for linear and nonlinear heat-transfer equations, Thermal Science, Volume 21 (2017), pp. 2307-2311 | DOI
[13] Symmetry, reductions and exact solutions of the difference equation \(u_{n+2} = (au_n)/(1 + bu_nu_{n+1})\), J. Difference Equ. Appl., Volume 23 (2017), pp. 1017-1024 | Zbl | DOI
[14] Symmetries, conservation laws, and Integrability of Difference Equations, Adv. Difference Equ., Volume 2014 (2014), pp. 1-14 | DOI
[15] The invariance, Conservation laws and Integration of some Higher-order Difference Equations, Advances and Applications in Discrete Mathematics, Volume 18 (2017), pp. 71-86 | Zbl | DOI
[16] Difference Equations by Differential Equation Methods, Cambridge University Press, Cambridge, 2014 | DOI
[17] On the Global Attractivity of Positive Solutions of a Rational Difference Equation , Selcuk J. Appl. Math., Volume 9 (2008), pp. 3-8
[18] On the Third Order Rational Difference Equation \(x_{n+1} = x_nx_{n-2}/x_{n-1}(a+bx_nx_{n-2})\), Int. J. Contemp. Math. Sci., Volume 27 (2009), pp. 1321-1334
[19] Lie group Formalism for Difference Equations , J. Phys. A, Volume 30 (1997), pp. 633-649 | DOI
[20] Lie Symmetries and the Integration of Difference Equations, Phys. Lett. A, Volume 184 (1993), pp. 64-70 | DOI
[21] Exact travelling wave solutions for local fractional two-dimensional Burgers-type equations, Comput. Math. Appl., Volume 26 (2017), pp. 203-210 | Zbl | DOI
[22] Exact traveling-wave solution for local fractional Boussinesq equation in fractal domain, Fractals, Volume 25 (2017), pp. 1-7 | DOI
[23] On exact traveling-wave solutions for local fractional Korteweg-de Vries equation, Chaos, Volume 26 (2016), pp. 1-5 | DOI | Zbl
Cité par Sources :