Efficient approximations of finite and infinite real alternating $p$-series
Journal of nonlinear sciences and its applications, Tome 11 (2018) no. 11, p. 1250-1261.

Voir la notice de l'article provenant de la source International Scientific Research Publications

For $n\in\mathbb{N}$ and $p\in\mathbb{R}$ the $n$th partial sum of the alternating $p$-series, known also as alternating generalized harmonic number of order $p$,
$ H^*(n,p):=\sum_{i=1}^n(-1)^{i+1}\frac{1}{i^p} $
is given in the form
$ H^*(n,p)=S_q(k,n,p)+r^*_q(k,n,p), $
where $k,q\in\mathbb{N}$ with $k\lfloor n/2\rfloor$ are parameters, controlling the magnitude of the error term $r^*_q(k,n,p)$. The function $S_q(k,n,p)$ consists of $2(k+1)+q$ simple summands and $r^*_q(k,n,p)$ is estimated for $q>-p+1$, as \begin{equation*} \big|r^*_q(k,n,p)\big| \frac{|p|(|p|+1)\cdots(|p|+q-1)\pi^{p+1}}{3(p+q-1)(2k\pi)^{p+q-1}} . \end{equation*} Additionally, for $p\in\mathbb{R}^+$ and $k,q\in\mathbb{N}$, we have \begin{equation*} \left|r_q^*(k,\infty,p)\right| \le\frac{p(p+1)\cdots(p+q-2)\pi^{p+1}}{3(2k\pi)^{p+q-1}}. \end{equation*}
DOI : 10.22436/jnsa.011.11.05
Classification : 11Y60, 11Y99, 33F05, 33E20, 40A25, 41A60, 65B10, 65B15
Keywords: Alternating, alternating generalized harmonic number, approximation, estimate, alternating \(p\)-series

Lampret, Vito  1

1 University of Ljubljana, Slovenia, EU
@article{JNSA_2018_11_11_a4,
     author = {Lampret, Vito },
     title = {Efficient approximations of finite and infinite real alternating \(p\)-series},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {1250-1261},
     publisher = {mathdoc},
     volume = {11},
     number = {11},
     year = {2018},
     doi = {10.22436/jnsa.011.11.05},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.11.05/}
}
TY  - JOUR
AU  - Lampret, Vito 
TI  - Efficient approximations of finite and infinite real alternating \(p\)-series
JO  - Journal of nonlinear sciences and its applications
PY  - 2018
SP  - 1250
EP  - 1261
VL  - 11
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.11.05/
DO  - 10.22436/jnsa.011.11.05
LA  - en
ID  - JNSA_2018_11_11_a4
ER  - 
%0 Journal Article
%A Lampret, Vito 
%T Efficient approximations of finite and infinite real alternating \(p\)-series
%J Journal of nonlinear sciences and its applications
%D 2018
%P 1250-1261
%V 11
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.11.05/
%R 10.22436/jnsa.011.11.05
%G en
%F JNSA_2018_11_11_a4
Lampret, Vito . Efficient approximations of finite and infinite real alternating \(p\)-series. Journal of nonlinear sciences and its applications, Tome 11 (2018) no. 11, p. 1250-1261. doi : 10.22436/jnsa.011.11.05. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.11.05/

[1] Abalo, E. K.; Abalo, K. Y. Convergence of p-series revisited with applications, Int. J. Math. Math. Sci., Volume 2006 (2006), pp. 1-8 | Zbl

[2] Abramowitz, M.; Stegun, I. A. Handbook of Mathematical Functions: with formulas, graphs, and mathematical tables, Dover Publications, New York, 1972

[3] Chlebus, E. An approximate formula for a partial sum of the divergent p-series, Appl. Math. Lett., Volume 22 (2009), pp. 732-737 | Zbl | DOI

[4] Choi, J.; Srivastava, H. M. Some summation formulas involving harmonic numbers and generalized harmonic numbers, Math. Comput. Modelling, Volume 54 (2011), pp. 2220-2234 | DOI | Zbl

[5] Cvijović, D. The Dattoli-Srivastava conjectures concerning generating functions involving the harmonic numbers, Appl. Math. Comput., Volume 215 (2010), pp. 4040-4043 | DOI | Zbl

[6] Dattoli, G.; H. M. Srivastava A note on harmonic numbers, umbral calculus and generating functions, Appl. Math. Lett., Volume 21 (2008), pp. 686-693 | Zbl | DOI

[7] Hansheng, Y.; Lu, B. Another proof for the p-series test, College Math. J., Volume 36 (2005), pp. 235-237 | DOI

[8] Kim, T.; Kim, Y.-H.; Lee, D.-H.; Park, D.-W.; Ro, Y. S. On the alternating sums of powers of consecutive integers, Proc. Jangjeon Math. Soc., Volume 8 (2005), pp. 175-178

[9] Lampret, V. Accurate double inequalities for generalized harmonic numbers, Appl. Math. Comput., Volume 265 (2015), pp. 557-567 | DOI | Zbl

[10] V. Lampret Approximating real Pochhammer products: A comparison with powers, Cent. Eur. J. Math., Volume 7 (2009), pp. 493-505 | Zbl | DOI

[11] V. Lampret Asymptotic inequalities for alternating harmonics, Bull. Math. Sci., Volume 2017 (2017), pp. 1-8 | DOI

[12] Lampret, V. Even from Gregory-Leibniz series \(\pi\) could be computed: an example of how convergence of series can be accelerated, Lect. Mat., Volume 27 (2006), pp. 21-25 | Zbl

[13] Lampret, V. Wallis’ sequence estimated accurately using an alternating series, J. Number Theory, Volume 172 (2017), pp. 256-269 | Zbl | DOI

[14] MacDonald, D. A. A note on the summation of slowly convergent alternating series, BIT, Volume 36 (1996), pp. 766-774 | Zbl | DOI

[15] Meštrović, R. Proof of a congruence for harmonic numbers conjectured by Z.-W. Sun, Int. J. Number Theory, Volume 8 (2012), pp. 1081-1085 | Zbl | DOI

[16] Rassias, T. M.; Srivastava, H. M. Some classes of infinite series associated with the Riemann zeta and polygamma functions and generalized harmonic numbers , Appl. Math. Comput., Volume 131 (2002), pp. 593-605 | DOI | Zbl

[17] Sîntămărian, A. Sharp estimates regarding the remainder of the alternating harmonic series, Math. Inequal. Appl., Volume 18 (2015), pp. 347-352 | Zbl

[18] Sofo, A. New families of alternating harmonic number sums, Tbilisi Math. J., Volume 8 (2015), pp. 195-209 | DOI | Zbl

[19] Sofo, A. Polylogarithmic connections with Euler sums , Sarajevo J. Math., Volume 12 (2016), pp. 17-32 | DOI

[20] Sofo, A. Quadratic alternating harmonic number sums, J. Number Theory, Volume 154 (2015), pp. 144-159 | DOI

[21] Sofo, A.; Srivastava, H. M. A family of shifted harmonic sums, Ramanujan J., Volume 37 (2015), pp. 89-108 | DOI | Zbl

[22] Z.-W. Sun Arithmetic theory of harmonic numbers , Proc. Amer. Math. Soc., Volume 140 (2012), pp. 415-428 | DOI

[23] Tóth, L.; Bukor, J. On the alternating series \(1 - \frac{1}{2} + \frac{1}{ 3} - \frac{1}{ 4} + ...\), J. Math. Anal. Appl., Volume 282 (2003), pp. 21-25 | DOI

[24] Wolfram Mathematica, Version 7.0, Wolfram Research, Inc. (1988–2009.)

[25] Wu, T.-C.; Tu, S.-T.; H. M. Srivastava Some combinatorial series identities associated with the digamma function and harmonic numbers, Appl. Math. Lett., Volume 13 (2000), pp. 101-106 | DOI | Zbl

[26] D.-Y. Zheng Further summation formulae related to generalized harmonic numbers, J. Math. Anal. Appl., Volume 335 (2007), pp. 692-706 | Zbl | DOI

Cité par Sources :