Voir la notice de l'article provenant de la source International Scientific Research Publications
$ H^*(n,p):=\sum_{i=1}^n(-1)^{i+1}\frac{1}{i^p} $ |
$ H^*(n,p)=S_q(k,n,p)+r^*_q(k,n,p), $ |
Lampret, Vito  1
@article{JNSA_2018_11_11_a4, author = {Lampret, Vito }, title = {Efficient approximations of finite and infinite real alternating \(p\)-series}, journal = {Journal of nonlinear sciences and its applications}, pages = {1250-1261}, publisher = {mathdoc}, volume = {11}, number = {11}, year = {2018}, doi = {10.22436/jnsa.011.11.05}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.11.05/} }
TY - JOUR AU - Lampret, Vito TI - Efficient approximations of finite and infinite real alternating \(p\)-series JO - Journal of nonlinear sciences and its applications PY - 2018 SP - 1250 EP - 1261 VL - 11 IS - 11 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.11.05/ DO - 10.22436/jnsa.011.11.05 LA - en ID - JNSA_2018_11_11_a4 ER -
%0 Journal Article %A Lampret, Vito %T Efficient approximations of finite and infinite real alternating \(p\)-series %J Journal of nonlinear sciences and its applications %D 2018 %P 1250-1261 %V 11 %N 11 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.11.05/ %R 10.22436/jnsa.011.11.05 %G en %F JNSA_2018_11_11_a4
Lampret, Vito . Efficient approximations of finite and infinite real alternating \(p\)-series. Journal of nonlinear sciences and its applications, Tome 11 (2018) no. 11, p. 1250-1261. doi : 10.22436/jnsa.011.11.05. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.11.05/
[1] Convergence of p-series revisited with applications, Int. J. Math. Math. Sci., Volume 2006 (2006), pp. 1-8 | Zbl
[2] Handbook of Mathematical Functions: with formulas, graphs, and mathematical tables, Dover Publications, New York, 1972
[3] An approximate formula for a partial sum of the divergent p-series, Appl. Math. Lett., Volume 22 (2009), pp. 732-737 | Zbl | DOI
[4] Some summation formulas involving harmonic numbers and generalized harmonic numbers, Math. Comput. Modelling, Volume 54 (2011), pp. 2220-2234 | DOI | Zbl
[5] The Dattoli-Srivastava conjectures concerning generating functions involving the harmonic numbers, Appl. Math. Comput., Volume 215 (2010), pp. 4040-4043 | DOI | Zbl
[6] A note on harmonic numbers, umbral calculus and generating functions, Appl. Math. Lett., Volume 21 (2008), pp. 686-693 | Zbl | DOI
[7] Another proof for the p-series test, College Math. J., Volume 36 (2005), pp. 235-237 | DOI
[8] On the alternating sums of powers of consecutive integers, Proc. Jangjeon Math. Soc., Volume 8 (2005), pp. 175-178
[9] Accurate double inequalities for generalized harmonic numbers, Appl. Math. Comput., Volume 265 (2015), pp. 557-567 | DOI | Zbl
[10] Approximating real Pochhammer products: A comparison with powers, Cent. Eur. J. Math., Volume 7 (2009), pp. 493-505 | Zbl | DOI
[11] Asymptotic inequalities for alternating harmonics, Bull. Math. Sci., Volume 2017 (2017), pp. 1-8 | DOI
[12] Even from Gregory-Leibniz series \(\pi\) could be computed: an example of how convergence of series can be accelerated, Lect. Mat., Volume 27 (2006), pp. 21-25 | Zbl
[13] Wallis’ sequence estimated accurately using an alternating series, J. Number Theory, Volume 172 (2017), pp. 256-269 | Zbl | DOI
[14] A note on the summation of slowly convergent alternating series, BIT, Volume 36 (1996), pp. 766-774 | Zbl | DOI
[15] Proof of a congruence for harmonic numbers conjectured by Z.-W. Sun, Int. J. Number Theory, Volume 8 (2012), pp. 1081-1085 | Zbl | DOI
[16] Some classes of infinite series associated with the Riemann zeta and polygamma functions and generalized harmonic numbers , Appl. Math. Comput., Volume 131 (2002), pp. 593-605 | DOI | Zbl
[17] Sharp estimates regarding the remainder of the alternating harmonic series, Math. Inequal. Appl., Volume 18 (2015), pp. 347-352 | Zbl
[18] New families of alternating harmonic number sums, Tbilisi Math. J., Volume 8 (2015), pp. 195-209 | DOI | Zbl
[19] Polylogarithmic connections with Euler sums , Sarajevo J. Math., Volume 12 (2016), pp. 17-32 | DOI
[20] Quadratic alternating harmonic number sums, J. Number Theory, Volume 154 (2015), pp. 144-159 | DOI
[21] A family of shifted harmonic sums, Ramanujan J., Volume 37 (2015), pp. 89-108 | DOI | Zbl
[22] Arithmetic theory of harmonic numbers , Proc. Amer. Math. Soc., Volume 140 (2012), pp. 415-428 | DOI
[23] On the alternating series \(1 - \frac{1}{2} + \frac{1}{ 3} - \frac{1}{ 4} + ...\), J. Math. Anal. Appl., Volume 282 (2003), pp. 21-25 | DOI
[24] Mathematica, Version 7.0, Wolfram Research, Inc. (1988–2009.)
[25] Some combinatorial series identities associated with the digamma function and harmonic numbers, Appl. Math. Lett., Volume 13 (2000), pp. 101-106 | DOI | Zbl
[26] Further summation formulae related to generalized harmonic numbers, J. Math. Anal. Appl., Volume 335 (2007), pp. 692-706 | Zbl | DOI
Cité par Sources :