Differentiability of pseudo-dual-quaternionic functions with a differential operator
Journal of nonlinear sciences and its applications, Tome 11 (2018) no. 11, p. 1235-1242.

Voir la notice de l'article provenant de la source International Scientific Research Publications

This paper introduces the new concept of pseudo-dual-quaternions and some of their basic properties based on matrices. We extend the concept of differentiability to pseudo-dual-quaternionic functions. Also, we propose a corresponding Cauchy-Riemann formulas induced the properties of a holomorphic function of pseudo-dual-quaternionic variables.
DOI : 10.22436/jnsa.011.11.03
Classification : 32A99, 32W50, 30G35, 11E88
Keywords: Dual-quaternion, differential operators, differentiability, Cauchy-Riemann formulas

Kim, Ji Eun  1

1 Department of Mathematics, Dongguk University, Gyeongju-si 38066, Republic of Korea
@article{JNSA_2018_11_11_a2,
     author = {Kim, Ji Eun },
     title = {Differentiability of pseudo-dual-quaternionic functions with a differential operator},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {1235-1242},
     publisher = {mathdoc},
     volume = {11},
     number = {11},
     year = {2018},
     doi = {10.22436/jnsa.011.11.03},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.11.03/}
}
TY  - JOUR
AU  - Kim, Ji Eun 
TI  - Differentiability of pseudo-dual-quaternionic functions with a differential operator
JO  - Journal of nonlinear sciences and its applications
PY  - 2018
SP  - 1235
EP  - 1242
VL  - 11
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.11.03/
DO  - 10.22436/jnsa.011.11.03
LA  - en
ID  - JNSA_2018_11_11_a2
ER  - 
%0 Journal Article
%A Kim, Ji Eun 
%T Differentiability of pseudo-dual-quaternionic functions with a differential operator
%J Journal of nonlinear sciences and its applications
%D 2018
%P 1235-1242
%V 11
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.11.03/
%R 10.22436/jnsa.011.11.03
%G en
%F JNSA_2018_11_11_a2
Kim, Ji Eun . Differentiability of pseudo-dual-quaternionic functions with a differential operator. Journal of nonlinear sciences and its applications, Tome 11 (2018) no. 11, p. 1235-1242. doi : 10.22436/jnsa.011.11.03. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.11.03/

[1] Cheng, H. H. Programming with dual numbers and its applications in mechanisms design, Eng. Comput., Volume 10 (1994), pp. 212-229 | DOI

[2] Clifford, M. A. Preliminary Sketch of Biquaternions , Proc. Lond. Math. Soc., Volume 4 (1871/73), pp. 381-395 | DOI

[3] Dooley, J. R.; McCarthy, J. M. Spatial rigid body dynamics using dual quaternion components , Proceedings. 1991 IEEE International Conference on Robotics and Automation, Volume 1991 (1991), pp. 90-95 | DOI

[4] Fueter, R. Die Funktionentheorie der Differentialgleichungen \(\Delta u = 0\) and \(\Delta\Delta u = 0\) mit vier reellen Variablen, Comment. math. Helv., Volume 7 (1934), pp. 307-330 | Zbl | DOI

[5] Fueter, R. Über die analytische Darstellung der regulären Funktionen einer Quaternionenvariablen, Comment. math. Helv., Volume 8 (1935), pp. 371-378 | Zbl | DOI

[6] Hamilton, W. R. Elements of Quaternions , Longmans, Green, and Company, London, 1899

[7] Kajiwara, J. J.; Li, X. D.; Shon, K. H. Regeneration in Complex, Quaternion and Clifford analysis, in: Finite or Infinite Dimensional Complex Analysis and Applications, Volume 2004 (2004), pp. 287-298 | DOI | Zbl

[8] Kim, J. E. The corresponding inverse of functions of multidual complex variables in Clifford analysis, J. Nonlinear Sci. Appl., Volume 9 (2016), pp. 4520-4528 | Zbl | DOI

[9] Kim, J. E. A corresponding Cullen-regularity for split-quaternionic-valued functions, Adv. Difference Equ., Volume 2017 (2017), pp. 1-14 | DOI

[10] F. Messelmi Dual-complex numbers and their holomorphic functions, HAL archives-ouvertes.fr, Centre Pour la Comm. Scientifique Directe, Volume 2015 (2015), pp. 1-11

[11] Nôno, K. Hyperholomorphic functions of a quaternion variable, Bull. Fukuoka Univ. Ed. III, Volume 32 (1982), pp. 21-37

[12] Ravani, B.; Roth, B. Mappings of spatial kinematics, J. Mech., Trans., and Automation, Volume 106 (1984), pp. 341-347 | DOI

[13] Study, E. Geometrie der Dynamen, BG Teubner, Leipzig, 1903

[14] Sudbery, A. Quaternionic analysis, Math. Proc. Cambridge Philos. Soc., Volume 85 (1979), pp. 199-225 | DOI

[15] Yang, A. T.; Freudenstein, F. Application of dual-number quaternion algebra to the analysis of spatial mechanisms, J. Appl. Mech., Volume 31 (1964), pp. 300-308 | Zbl | DOI

Cité par Sources :