Voir la notice de l'article provenant de la source International Scientific Research Publications
Kim, Ji Eun  1
@article{JNSA_2018_11_11_a2, author = {Kim, Ji Eun }, title = {Differentiability of pseudo-dual-quaternionic functions with a differential operator}, journal = {Journal of nonlinear sciences and its applications}, pages = {1235-1242}, publisher = {mathdoc}, volume = {11}, number = {11}, year = {2018}, doi = {10.22436/jnsa.011.11.03}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.11.03/} }
TY - JOUR AU - Kim, Ji Eun TI - Differentiability of pseudo-dual-quaternionic functions with a differential operator JO - Journal of nonlinear sciences and its applications PY - 2018 SP - 1235 EP - 1242 VL - 11 IS - 11 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.11.03/ DO - 10.22436/jnsa.011.11.03 LA - en ID - JNSA_2018_11_11_a2 ER -
%0 Journal Article %A Kim, Ji Eun %T Differentiability of pseudo-dual-quaternionic functions with a differential operator %J Journal of nonlinear sciences and its applications %D 2018 %P 1235-1242 %V 11 %N 11 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.11.03/ %R 10.22436/jnsa.011.11.03 %G en %F JNSA_2018_11_11_a2
Kim, Ji Eun . Differentiability of pseudo-dual-quaternionic functions with a differential operator. Journal of nonlinear sciences and its applications, Tome 11 (2018) no. 11, p. 1235-1242. doi : 10.22436/jnsa.011.11.03. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.11.03/
[1] Programming with dual numbers and its applications in mechanisms design, Eng. Comput., Volume 10 (1994), pp. 212-229 | DOI
[2] Preliminary Sketch of Biquaternions , Proc. Lond. Math. Soc., Volume 4 (1871/73), pp. 381-395 | DOI
[3] Spatial rigid body dynamics using dual quaternion components , Proceedings. 1991 IEEE International Conference on Robotics and Automation, Volume 1991 (1991), pp. 90-95 | DOI
[4] Die Funktionentheorie der Differentialgleichungen \(\Delta u = 0\) and \(\Delta\Delta u = 0\) mit vier reellen Variablen, Comment. math. Helv., Volume 7 (1934), pp. 307-330 | Zbl | DOI
[5] Über die analytische Darstellung der regulären Funktionen einer Quaternionenvariablen, Comment. math. Helv., Volume 8 (1935), pp. 371-378 | Zbl | DOI
[6] Elements of Quaternions , Longmans, Green, and Company, London, 1899
[7] Regeneration in Complex, Quaternion and Clifford analysis, in: Finite or Infinite Dimensional Complex Analysis and Applications, Volume 2004 (2004), pp. 287-298 | DOI | Zbl
[8] The corresponding inverse of functions of multidual complex variables in Clifford analysis, J. Nonlinear Sci. Appl., Volume 9 (2016), pp. 4520-4528 | Zbl | DOI
[9] A corresponding Cullen-regularity for split-quaternionic-valued functions, Adv. Difference Equ., Volume 2017 (2017), pp. 1-14 | DOI
[10] Dual-complex numbers and their holomorphic functions, HAL archives-ouvertes.fr, Centre Pour la Comm. Scientifique Directe, Volume 2015 (2015), pp. 1-11
[11] Hyperholomorphic functions of a quaternion variable, Bull. Fukuoka Univ. Ed. III, Volume 32 (1982), pp. 21-37
[12] Mappings of spatial kinematics, J. Mech., Trans., and Automation, Volume 106 (1984), pp. 341-347 | DOI
[13] Geometrie der Dynamen, BG Teubner, Leipzig, 1903
[14] Quaternionic analysis, Math. Proc. Cambridge Philos. Soc., Volume 85 (1979), pp. 199-225 | DOI
[15] Application of dual-number quaternion algebra to the analysis of spatial mechanisms, J. Appl. Mech., Volume 31 (1964), pp. 300-308 | Zbl | DOI
Cité par Sources :