A viscosity iterative algorithm for split common fixed-point problems of demicontractive mappings
Journal of nonlinear sciences and its applications, Tome 11 (2018) no. 11, p. 1225-1234.

Voir la notice de l'article provenant de la source International Scientific Research Publications

In this paper, we firstly introduce a new viscosity cyclic iterative algorithm for the split common fixed-point problem (SCFP) of demicontractive mappings. Next we prove the strong convergence of the sequence generated recursively by such a viscosity cyclic algorithm to a solution of the SCFP, which improves and extends some recent corresponding results.
DOI : 10.22436/jnsa.011.11.02
Classification : 47H05, 47H09, 47J10, 47H20
Keywords: Multiple-set split equality common fixed-point problem, demicontractive mapping, viscosity cyclic iterative algorithm, strong convergence

Gao, Di  1 ; Kim, Tae Hwa  1 ; Wang, Yaqin  2

1 Department of Applied Mathematics, College of Natural Sciences, Pukyong National University, Busan 48513, Republic of Korea
2 Department of Mathematics, Shaoxing University, Shaoxing 312000, China
@article{JNSA_2018_11_11_a1,
     author = {Gao, Di  and Kim, Tae Hwa  and Wang, Yaqin },
     title = {A viscosity iterative algorithm for split common fixed-point problems of demicontractive mappings},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {1225-1234},
     publisher = {mathdoc},
     volume = {11},
     number = {11},
     year = {2018},
     doi = {10.22436/jnsa.011.11.02},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.11.02/}
}
TY  - JOUR
AU  - Gao, Di 
AU  - Kim, Tae Hwa 
AU  - Wang, Yaqin 
TI  - A viscosity iterative algorithm for split common fixed-point problems of demicontractive mappings
JO  - Journal of nonlinear sciences and its applications
PY  - 2018
SP  - 1225
EP  - 1234
VL  - 11
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.11.02/
DO  - 10.22436/jnsa.011.11.02
LA  - en
ID  - JNSA_2018_11_11_a1
ER  - 
%0 Journal Article
%A Gao, Di 
%A Kim, Tae Hwa 
%A Wang, Yaqin 
%T A viscosity iterative algorithm for split common fixed-point problems of demicontractive mappings
%J Journal of nonlinear sciences and its applications
%D 2018
%P 1225-1234
%V 11
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.11.02/
%R 10.22436/jnsa.011.11.02
%G en
%F JNSA_2018_11_11_a1
Gao, Di ; Kim, Tae Hwa ; Wang, Yaqin . A viscosity iterative algorithm for split common fixed-point problems of demicontractive mappings. Journal of nonlinear sciences and its applications, Tome 11 (2018) no. 11, p. 1225-1234. doi : 10.22436/jnsa.011.11.02. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.11.02/

[1] Censor, Y.; Elfving, T. A multiprojection algorithm using Bregman projections in a product space, Numer. Algorithms, Volume 8 (1994), pp. 221-239 | Zbl | DOI

[2] Censor, Y.; A. Segal The split common fixed point problem for directed operators, J. Convex Anal., Volume 16 (2009), pp. 587-600

[3] Cui, H. H.; Su, M. L.; Wang, F. H. Damped projection method for split common fixed point problems, J. Inequal. Appl., Volume 2013 (2013), pp. 1-10 | Zbl | DOI

[4] Cui, H. H.; Wang, F. H. Iterative methods for the split common fixed point problem in Hilbert spaces, Fixed Point Theory Appl., Volume 2014 (2014), pp. 1-8 | DOI

[5] Eicke, B. Iteration methods for convexly constrained ill-posed problems in Hilbert space, Numer. Funct. Anal. Optim., Volume 13 (1992), pp. 413-429 | DOI | Zbl

[6] He, H. M.; Liu, S. Y.; Chen, R. D.; Wang, X. Y. Strong convergence results for the split common fixed point problem, J. Nonlinear Sci. Appl. , Volume 9 (2016), pp. 5332-5343

[7] Joshi, M. C.; Bose, R. K. Some topics in nonlinear functional analysis , John Wiley & Sons, New York, 1985

[8] P. E. Maingé Strong convergence of projected subgradient methods for nonsmooth and nonstrictly convex minimization, Set-Valued Anal., Volume 16 (2008), pp. 899-912 | Zbl | DOI

[9] Marino, G.; Xu, H.-K. Weak and strong convergence theorems for strict pseudo-contractions in Hilbert spaces, J. Math. Anal. Appl., Volume 329 (2007), pp. 336-346 | DOI

[10] Moudafi, A. The split common fixed-point problem for demicontractive mappings, Inverse Problems, Volume 26 (2010), pp. 1-6 | DOI

[11] Takahashi, W. Nonlinear Functional Analysis, Yokohama Publishers, Yokohama, 2000

[12] Wang, Y. Q.; Kim, T. H. Simultaneous iterative algorithm for the split equality fixed-point problem of demicontractive mappings, J. Nonlinear Sci. Appl., Volume 10 (2017), pp. 154-165

[13] Wang, Y. Q.; Kim, T.-H.; Fang, X. L.; He, H. M. The split common fixed-point problem for demicontractive mappings and quasi-nonexpansive mappings, J. Nonlinear Sci. Appl., Volume 10 (2017), pp. 2976-2985

[14] Wang, F. H.; Xu, H.-K. Cyclic algorithms for split feasibility problems in Hilbert spaces, Nonlinear Anal., Volume 74 (2011), pp. 4105-4111 | Zbl | DOI

[15] Xu, H. K. An iterative approach to quadratic optimization, J. Optim. Theory Appl., Volume 116 (2003), pp. 659-678 | DOI

Cité par Sources :