Voir la notice de l'article provenant de la source International Scientific Research Publications
Gao, Di  1 ; Kim, Tae Hwa  1 ; Wang, Yaqin  2
@article{JNSA_2018_11_11_a1, author = {Gao, Di and Kim, Tae Hwa and Wang, Yaqin }, title = {A viscosity iterative algorithm for split common fixed-point problems of demicontractive mappings}, journal = {Journal of nonlinear sciences and its applications}, pages = {1225-1234}, publisher = {mathdoc}, volume = {11}, number = {11}, year = {2018}, doi = {10.22436/jnsa.011.11.02}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.11.02/} }
TY - JOUR AU - Gao, Di AU - Kim, Tae Hwa AU - Wang, Yaqin TI - A viscosity iterative algorithm for split common fixed-point problems of demicontractive mappings JO - Journal of nonlinear sciences and its applications PY - 2018 SP - 1225 EP - 1234 VL - 11 IS - 11 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.11.02/ DO - 10.22436/jnsa.011.11.02 LA - en ID - JNSA_2018_11_11_a1 ER -
%0 Journal Article %A Gao, Di %A Kim, Tae Hwa %A Wang, Yaqin %T A viscosity iterative algorithm for split common fixed-point problems of demicontractive mappings %J Journal of nonlinear sciences and its applications %D 2018 %P 1225-1234 %V 11 %N 11 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.11.02/ %R 10.22436/jnsa.011.11.02 %G en %F JNSA_2018_11_11_a1
Gao, Di ; Kim, Tae Hwa ; Wang, Yaqin . A viscosity iterative algorithm for split common fixed-point problems of demicontractive mappings. Journal of nonlinear sciences and its applications, Tome 11 (2018) no. 11, p. 1225-1234. doi : 10.22436/jnsa.011.11.02. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.11.02/
[1] A multiprojection algorithm using Bregman projections in a product space, Numer. Algorithms, Volume 8 (1994), pp. 221-239 | Zbl | DOI
[2] The split common fixed point problem for directed operators, J. Convex Anal., Volume 16 (2009), pp. 587-600
[3] Damped projection method for split common fixed point problems, J. Inequal. Appl., Volume 2013 (2013), pp. 1-10 | Zbl | DOI
[4] Iterative methods for the split common fixed point problem in Hilbert spaces, Fixed Point Theory Appl., Volume 2014 (2014), pp. 1-8 | DOI
[5] Iteration methods for convexly constrained ill-posed problems in Hilbert space, Numer. Funct. Anal. Optim., Volume 13 (1992), pp. 413-429 | DOI | Zbl
[6] Strong convergence results for the split common fixed point problem, J. Nonlinear Sci. Appl. , Volume 9 (2016), pp. 5332-5343
[7] Some topics in nonlinear functional analysis , John Wiley & Sons, New York, 1985
[8] Strong convergence of projected subgradient methods for nonsmooth and nonstrictly convex minimization, Set-Valued Anal., Volume 16 (2008), pp. 899-912 | Zbl | DOI
[9] Weak and strong convergence theorems for strict pseudo-contractions in Hilbert spaces, J. Math. Anal. Appl., Volume 329 (2007), pp. 336-346 | DOI
[10] The split common fixed-point problem for demicontractive mappings, Inverse Problems, Volume 26 (2010), pp. 1-6 | DOI
[11] Nonlinear Functional Analysis, Yokohama Publishers, Yokohama, 2000
[12] Simultaneous iterative algorithm for the split equality fixed-point problem of demicontractive mappings, J. Nonlinear Sci. Appl., Volume 10 (2017), pp. 154-165
[13] The split common fixed-point problem for demicontractive mappings and quasi-nonexpansive mappings, J. Nonlinear Sci. Appl., Volume 10 (2017), pp. 2976-2985
[14] Cyclic algorithms for split feasibility problems in Hilbert spaces, Nonlinear Anal., Volume 74 (2011), pp. 4105-4111 | Zbl | DOI
[15] An iterative approach to quadratic optimization, J. Optim. Theory Appl., Volume 116 (2003), pp. 659-678 | DOI
Cité par Sources :