Voir la notice de l'article provenant de la source International Scientific Research Publications
Argyros, Ioannis K.  1 ; Magreñán, Alberto 2 ; Sarría, Íñigo 2 ; Sicilia, Juan Antonio  3
@article{JNSA_2018_11_11_a0, author = {Argyros, Ioannis K. and Magre\~n\'an, Alberto and Sarr{\'\i}a, \'I\~nigo and Sicilia, Juan Antonio }, title = {Improved convergence analysis of the {Secant} method using restricted convergence domains with real-world applications}, journal = {Journal of nonlinear sciences and its applications}, pages = {1215-1224}, publisher = {mathdoc}, volume = {11}, number = {11}, year = {2018}, doi = {10.22436/jnsa.011.11.01}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.11.01/} }
TY - JOUR AU - Argyros, Ioannis K. AU - Magreñán, Alberto AU - Sarría, Íñigo AU - Sicilia, Juan Antonio TI - Improved convergence analysis of the Secant method using restricted convergence domains with real-world applications JO - Journal of nonlinear sciences and its applications PY - 2018 SP - 1215 EP - 1224 VL - 11 IS - 11 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.11.01/ DO - 10.22436/jnsa.011.11.01 LA - en ID - JNSA_2018_11_11_a0 ER -
%0 Journal Article %A Argyros, Ioannis K. %A Magreñán, Alberto %A Sarría, Íñigo %A Sicilia, Juan Antonio %T Improved convergence analysis of the Secant method using restricted convergence domains with real-world applications %J Journal of nonlinear sciences and its applications %D 2018 %P 1215-1224 %V 11 %N 11 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.11.01/ %R 10.22436/jnsa.011.11.01 %G en %F JNSA_2018_11_11_a0
Argyros, Ioannis K. ; Magreñán, Alberto; Sarría, Íñigo; Sicilia, Juan Antonio . Improved convergence analysis of the Secant method using restricted convergence domains with real-world applications. Journal of nonlinear sciences and its applications, Tome 11 (2018) no. 11, p. 1215-1224. doi : 10.22436/jnsa.011.11.01. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.11.01/
[1] On a higher order Secant method, Appl. Math. Comput., Volume 141 (2003), pp. 321-329 | DOI
[2] Adaptive approximation of nonlinear operators, Numer. Funct. Anal. Optim., Volume 25 (2004), pp. 397-405 | DOI
[3] Approximation of inverse operators by a new family of high-order iterative methods, Numer. Linear Algebra Appl., Volume 21 (2014), pp. 629-664 | DOI | Zbl
[4] Improving the applicability of the Secant method to solve nonlinear systems of equations, Appl. Math. Comput., Volume 247 (2014), pp. 741-752 | DOI | Zbl
[5] Computational theory of iterative methods, Elsevier B. V., Amsterdam, 2007
[6] Numerical method for equations and its applications, CRC Press, Boca Raton, 2012
[7] A semilocal convergence for a uniparametric family of efficient Secant-like methods , J. Funct. Spaces, Volume 2014 (2014), pp. 1-10 | Zbl
[8] Weaker conditions for the convergence of Newton’s method , J. Complexity, Volume 28 (2012), pp. 364-387 | DOI
[9] A unified convergence analysis for secant-type methods , J. Korean Math. Soc., Volume 51 (2014), pp. 1155-1175 | DOI | Zbl
[10] Expanding the applicability of the secant method under weaker conditions , Appl. Math. Comput., Volume 266 (2015), pp. 1000-1012 | DOI
[11] Relaxed Secant-type methods, Nonlinear Stud., Volume 21 (2014), pp. 485-503 | Zbl
[12] The inexact, inexact perturbed, and quasi-Newton methods are equivalent models, Math. Comp., Volume 74 (2005), pp. 291-301 | Zbl | DOI
[13] Radiative transfer, Dover Publ., New York, 1960
[14] Toward a unified convergence theory for Newton-like methods, Nonlinear Functional Anal. and Appl., Volume 1970 (1970), pp. 425-472 | DOI | Zbl
[15] The Newton method: from Newton to Kantorovich (Spanish), Gac. R. Soc. Mat. Esp., Volume 13 (2010), pp. 53-76 | Zbl
[16] Smart Algorithms to Control a Variable Speed Wind Turbine, Int. J. Interact. Multimed. Artif. Intell., Volume 4 (2017), pp. 88-95 | DOI
[17] Optimal error bounds for the Newton-Kantorovich theorem, SIAM J. Numer. Anal., Volume 11 (1974), pp. 10-13 | Zbl | DOI
[18] Secant-like methods for solving nonlinear integral equations of the Hammerstein type, J. Comput. Appl. Math., Volume 115 (2000), pp. 245-254 | DOI | Zbl
[19] Families of Newton-like methods with fourth-order convergence, Int. J. Comput. Math., Volume 90 (2013), pp. 1072-1082 | DOI | Zbl
[20] Functional Analysis (Translated from the Russian by Howard L. Silcock), Pergamon Press, Oxford-Elmsford, 1982
[21] Nature Inspired Range BasedWireless Sensor Node Localization Algorithms, Int. J. Interact. Multimed. Artif. Intell., Volume 4 (2017), pp. 7-17
[22] A new tool to study real dynamics: The convergence plane, Appl. Math. Comput., Volume 248 (2014), pp. 215-224 | Zbl | DOI
[23] Iterative Solution of Nonlinear Equations in Several Variables, Academic press , , 1970
[24] Nondiscrete induction and iterative processes, Pitman (Advanced Publishing Program), Boston, 1984
[25] General local convergence theory for a class of iterative processes and its applications to Newton’s method , J. Complexity, Volume 25 (2009), pp. 38-62 | DOI | Zbl
[26] An adaptative continuation process for solving systems of nonlinear equations, Banach Ctz. Publ., Volume 3 (1975), pp. 129-142
[27] Untere fehlerschranken fr regula-falsi-verfahren, Period. Hungar., Volume 9 (1978), pp. 241-247 | Zbl | DOI
[28] Iterative method for solutions of equations, Prentice-Hall, Englewood Cliffs, 1964
[29] A convergence theorem for Newton-like methods in Banach spaces, Numer. Math., Volume 51 (1987), pp. 545-557 | DOI
[30] The majorant method in the theory of Newton-Kantorovich approximations and the Pták error estimates, Numer. Funct. Anal. Optim., Volume 9 (1987), pp. 671-684 | Zbl | DOI
Cité par Sources :