Voir la notice de l'article provenant de la source International Scientific Research Publications
Alderremy, A. A.  1 ; Elzaki, Tarig. M.  2
@article{JNSA_2018_11_10_a7, author = {Alderremy, A. A. and Elzaki, Tarig. M. }, title = {On the new double integral transform for solving singular system of hyperbolic equations}, journal = {Journal of nonlinear sciences and its applications}, pages = {1207-1214}, publisher = {mathdoc}, volume = {11}, number = {10}, year = {2018}, doi = {10.22436/jnsa.011.10.08}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.10.08/} }
TY - JOUR AU - Alderremy, A. A. AU - Elzaki, Tarig. M. TI - On the new double integral transform for solving singular system of hyperbolic equations JO - Journal of nonlinear sciences and its applications PY - 2018 SP - 1207 EP - 1214 VL - 11 IS - 10 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.10.08/ DO - 10.22436/jnsa.011.10.08 LA - en ID - JNSA_2018_11_10_a7 ER -
%0 Journal Article %A Alderremy, A. A. %A Elzaki, Tarig. M. %T On the new double integral transform for solving singular system of hyperbolic equations %J Journal of nonlinear sciences and its applications %D 2018 %P 1207-1214 %V 11 %N 10 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.10.08/ %R 10.22436/jnsa.011.10.08 %G en %F JNSA_2018_11_10_a7
Alderremy, A. A. ; Elzaki, Tarig. M. . On the new double integral transform for solving singular system of hyperbolic equations. Journal of nonlinear sciences and its applications, Tome 11 (2018) no. 10, p. 1207-1214. doi : 10.22436/jnsa.011.10.08. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.10.08/
[1] Hes variational iteration method for solving linear and non-linear systems of ordinary differential equations, Appl. Math. Comput., Volume 191 (2007), pp. 287-297 | DOI | Zbl
[2] On Some Convergence Theorems of Double Laplace Transform, J. Inform. Math. Sci., Volume 6 (2014), pp. 45-54
[3] Application of Projected Differential Transform Method on Nonlinear Partial Differential Equations with Proportional Delay in One Variable, World Appl. Sci. J., Volume 30 (2014), pp. 345-349 | DOI
[4] Double Laplace Variational Iteration Method for Solution of Nonlinear Convolution Partial Differential Equations, Arch. Sci., Volume 65 (2012), pp. 588-593
[5] Homotopy Perturbation Method and Elzaki Transform for Solving System of Nonlinear Partial Differential Equations, World Appl. Sci. J., Volume 24 (2013), pp. 944-948 | DOI
[6] On the New Integral Transform Elzaki Transform Fundamental Properties Investigations and Applications, Global J. Math. Sci., Volume 4 (2012), pp. 1-13
[7] Solution of Telegraph Equation by Modified of Double Sumudu Transform Elzaki Transform, Math. Theory Model., Volume 2 (2012), pp. 95-103
[8] Variational iteration method for delay differential equations, Commun. Nonlinear Sci. Numer. Simul., Volume 2 (1997), pp. 235-236 | DOI
[9] Variational iteration method a kind of non-linear analytical technique: some examples, Int. J. Non-linear Mech., Volume 34 (1999), pp. 699-708 | Zbl | DOI
[10] Variational iteration method: new development and applications, Comput. Math. Appl., Volume 54 (2007), pp. 881-894 | Zbl | DOI
[11] New iterative method: an application for solving fractional physical differential equations, Abstr. Appl. Anal., Volume 2013 (2013), pp. 1-9 | Zbl
[12] Reconstruction of variational iteration algorithms using the Laplace transform, Int. J. Nonlinear Sci. Num. Simul., Volume 10 (2009), pp. 1377-1382 | DOI
[13] A Laplace variational iteration strategy for the solution of differential equations, Appl. Math. Lett., Volume 25 (2012), pp. 2298-2305 | Zbl | DOI
[14] Comparing the Caputo, Caputo-Fabrizio and Atangana-Baleanu derivative with fractional order: Fractional cubic isothermal auto-catalytic chemical system, Eur. Phys. J. Plus, Volume 133 (2018), pp. 1-94 | DOI
[15] Optimal q-homotopy analysis method for time-space fractional gas dynamics equation, Eur. Phys. J. Plus, Volume 132 (2017), pp. 1-23 | DOI
[16] Analytical study for time and time-space fractional Burgers’ equation, Adv. Differ. Equ., Volume 2017 (2017), pp. 1-300 | DOI
[17] An application of homotopy analysis transform method for Riccati differential equation of fractional order, J. Fract. Calc. Appl., Volume 7 (2016), pp. 61-72
[18] New fractional derivatives applied to the Kortewegde Vries and Kortewegde VriesBurgers equations, Comp. Appl. Math., Volume 2018 (2018), pp. 1-14 | DOI
[19] Challenge in the variational iteration method-a new approach to identification of the Lagrange mutipliers, J. King Saud Univ. Sci., Volume 25 (2013), pp. 175-178 | DOI
[20] Laplace transform Overcoming Principle Drawbacks in Application of the Variational Iteration Method to Fractional Heat Equations, Therm. Sci., Volume 16 (2012), pp. 1257-1261 | DOI
[21] Variational iteration method for solving the time-fractional diffusion equations in porous medium, Chin. Phys. B, Volume 21 (2012), pp. 1-120504 | DOI
[22] Variational iteration method for fractional calculus–a universal approach by Laplace transform, Adv. Differ. Equ., Volume 2013 (2013), pp. 18-27 | Zbl | DOI
[23] Variational iteration method for the Burgers’ flow with fractional derivatives–New Lagrange multipliers, Appl. Math. Model., Volume 37 (2012), pp. 6183-6190 | DOI
Cité par Sources :