On the new double integral transform for solving singular system of hyperbolic equations
Journal of nonlinear sciences and its applications, Tome 11 (2018) no. 10, p. 1207-1214.

Voir la notice de l'article provenant de la source International Scientific Research Publications

In this manuscript, we will introduce a new double transform called double Elzaki transform (modification of Smudu transform), where we will study this transform and their theorems on convergence. Also, we will discuss the double new transform and it is convergent. After that, we study the combination of this double transforms and the new method in order to solve the singular system of hyperbolic equations of anomalies in through the examples in this paper. We found that this method is very effective in solving these equations compared to other methods as they need only one step to get the exact solution, while the other methods need more steps.
DOI : 10.22436/jnsa.011.10.08
Classification : 35A22, 35L81
Keywords: Double new integral, transform, convergence, nonlinear singular system of hyperbolic equations

Alderremy, A. A.  1 ; Elzaki, Tarig. M.  2

1 Mathematics Department, Faculty of Science, King Kalied University, Abha, Saudi Arabia
2 Mathematics Department, Faculty of Sciences and Arts-Alkamil, University of Jeddah, Jeddah, Saudi Arabia;Mathematics Department, Faculty of Science, Sudan University of Sciences and Technology, Sudan
@article{JNSA_2018_11_10_a7,
     author = {Alderremy, A. A.  and Elzaki, Tarig. M. },
     title = {On the new double integral transform for solving  singular system of hyperbolic equations},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {1207-1214},
     publisher = {mathdoc},
     volume = {11},
     number = {10},
     year = {2018},
     doi = {10.22436/jnsa.011.10.08},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.10.08/}
}
TY  - JOUR
AU  - Alderremy, A. A. 
AU  - Elzaki, Tarig. M. 
TI  - On the new double integral transform for solving  singular system of hyperbolic equations
JO  - Journal of nonlinear sciences and its applications
PY  - 2018
SP  - 1207
EP  - 1214
VL  - 11
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.10.08/
DO  - 10.22436/jnsa.011.10.08
LA  - en
ID  - JNSA_2018_11_10_a7
ER  - 
%0 Journal Article
%A Alderremy, A. A. 
%A Elzaki, Tarig. M. 
%T On the new double integral transform for solving  singular system of hyperbolic equations
%J Journal of nonlinear sciences and its applications
%D 2018
%P 1207-1214
%V 11
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.10.08/
%R 10.22436/jnsa.011.10.08
%G en
%F JNSA_2018_11_10_a7
Alderremy, A. A. ; Elzaki, Tarig. M. . On the new double integral transform for solving  singular system of hyperbolic equations. Journal of nonlinear sciences and its applications, Tome 11 (2018) no. 10, p. 1207-1214. doi : 10.22436/jnsa.011.10.08. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.10.08/

[1] Biazar, J.; Ghazvini, H. Hes variational iteration method for solving linear and non-linear systems of ordinary differential equations, Appl. Math. Comput., Volume 191 (2007), pp. 287-297 | DOI | Zbl

[2] Dhunde, R. R.; Waghmare, G. L. On Some Convergence Theorems of Double Laplace Transform, J. Inform. Math. Sci., Volume 6 (2014), pp. 45-54

[3] T. M. Elzaki Application of Projected Differential Transform Method on Nonlinear Partial Differential Equations with Proportional Delay in One Variable, World Appl. Sci. J., Volume 30 (2014), pp. 345-349 | DOI

[4] T. M. Elzaki Double Laplace Variational Iteration Method for Solution of Nonlinear Convolution Partial Differential Equations, Arch. Sci., Volume 65 (2012), pp. 588-593

[5] Elzaki, T. M.; Biazar, J. Homotopy Perturbation Method and Elzaki Transform for Solving System of Nonlinear Partial Differential Equations, World Appl. Sci. J., Volume 24 (2013), pp. 944-948 | DOI

[6] Elzaki, T. M.; Elzaki, S. M.; Elnour, E. A. On the New Integral Transform Elzaki Transform Fundamental Properties Investigations and Applications, Global J. Math. Sci., Volume 4 (2012), pp. 1-13

[7] Elzaki, T. M.; Hilal, E. M. A. Solution of Telegraph Equation by Modified of Double Sumudu Transform Elzaki Transform, Math. Theory Model., Volume 2 (2012), pp. 95-103

[8] He, J.-H. Variational iteration method for delay differential equations, Commun. Nonlinear Sci. Numer. Simul., Volume 2 (1997), pp. 235-236 | DOI

[9] He, J.-H. Variational iteration method a kind of non-linear analytical technique: some examples, Int. J. Non-linear Mech., Volume 34 (1999), pp. 699-708 | Zbl | DOI

[10] He, J.-H.; Wu, X.-H. Variational iteration method: new development and applications, Comput. Math. Appl., Volume 54 (2007), pp. 881-894 | Zbl | DOI

[11] Hemeda, A. A. New iterative method: an application for solving fractional physical differential equations, Abstr. Appl. Anal., Volume 2013 (2013), pp. 1-9 | Zbl

[12] Hesameddini, E.; Latifizadeh, H. Reconstruction of variational iteration algorithms using the Laplace transform, Int. J. Nonlinear Sci. Num. Simul., Volume 10 (2009), pp. 1377-1382 | DOI

[13] Khuri, S. A.; Sayfy, A. A Laplace variational iteration strategy for the solution of differential equations, Appl. Math. Lett., Volume 25 (2012), pp. 2298-2305 | Zbl | DOI

[14] K. M. Saad Comparing the Caputo, Caputo-Fabrizio and Atangana-Baleanu derivative with fractional order: Fractional cubic isothermal auto-catalytic chemical system, Eur. Phys. J. Plus, Volume 133 (2018), pp. 1-94 | DOI

[15] Saad, K. M.; Al-Shareef, E. H.; Mohamed, M. S.; Yang, X. J. Optimal q-homotopy analysis method for time-space fractional gas dynamics equation, Eur. Phys. J. Plus, Volume 132 (2017), pp. 1-23 | DOI

[16] Saad, K. M.; Al-Sharif, E. H. F. Analytical study for time and time-space fractional Burgers’ equation, Adv. Differ. Equ., Volume 2017 (2017), pp. 1-300 | DOI

[17] Saad, K. M.; AL-Shomrani, A. A. An application of homotopy analysis transform method for Riccati differential equation of fractional order, J. Fract. Calc. Appl., Volume 7 (2016), pp. 61-72

[18] Saad, K. M.; Baleanu, D.; Atangana, A. New fractional derivatives applied to the Kortewegde Vries and Kortewegde VriesBurgers equations, Comp. Appl. Math., Volume 2018 (2018), pp. 1-14 | DOI

[19] Wu, G.-C. Challenge in the variational iteration method-a new approach to identification of the Lagrange mutipliers, J. King Saud Univ. Sci., Volume 25 (2013), pp. 175-178 | DOI

[20] G.-C. Wu Laplace transform Overcoming Principle Drawbacks in Application of the Variational Iteration Method to Fractional Heat Equations, Therm. Sci., Volume 16 (2012), pp. 1257-1261 | DOI

[21] G.-C. Wu Variational iteration method for solving the time-fractional diffusion equations in porous medium, Chin. Phys. B, Volume 21 (2012), pp. 1-120504 | DOI

[22] Wu, G.-C.; D. Baleanu Variational iteration method for fractional calculus–a universal approach by Laplace transform, Adv. Differ. Equ., Volume 2013 (2013), pp. 18-27 | Zbl | DOI

[23] Wu, G.-C.; Baleanu, D. Variational iteration method for the Burgers’ flow with fractional derivatives–New Lagrange multipliers, Appl. Math. Model., Volume 37 (2012), pp. 6183-6190 | DOI

Cité par Sources :