A variety of dynamic inequalities on time scales with retardation
Journal of nonlinear sciences and its applications, Tome 11 (2018) no. 10, p. 1185-1206.

Voir la notice de l'article provenant de la source International Scientific Research Publications

In this paper, we will prove some new nonlinear retarded dynamic inequalities of Gronwall-Bellman type on time scales. These inequalities are of new forms compared with the existing results so far in the literature, which can be used as effective tools in the study of certain nonlinear retarded dynamic equations. Some special cases of our results contain continuous Gronwall-type inequalities and their discrete analogues. We also indicate some application examples to illustrate our results at the end.
DOI : 10.22436/jnsa.011.10.07
Classification : 26A15, 39A12, 34A12, 34A40, 26D10, 26D15, 26D20
Keywords: Gronwall's inequality, Young's inequality, time scales

El-Deeb, A. A.  1 ; Cheung, Wing-Sum  2

1 Department of Mathematics, Faculty of Science, Al-Azhar University, Nasr City (11884), Cairo, Egypt
2 Department of Mathematics, The University of Hong Kong, Pokfulam Road, Hong Kong
@article{JNSA_2018_11_10_a6,
     author = {El-Deeb, A. A.  and Cheung, Wing-Sum },
     title = {A variety of dynamic inequalities on time scales with retardation},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {1185-1206},
     publisher = {mathdoc},
     volume = {11},
     number = {10},
     year = {2018},
     doi = {10.22436/jnsa.011.10.07},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.10.07/}
}
TY  - JOUR
AU  - El-Deeb, A. A. 
AU  - Cheung, Wing-Sum 
TI  - A variety of dynamic inequalities on time scales with retardation
JO  - Journal of nonlinear sciences and its applications
PY  - 2018
SP  - 1185
EP  - 1206
VL  - 11
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.10.07/
DO  - 10.22436/jnsa.011.10.07
LA  - en
ID  - JNSA_2018_11_10_a6
ER  - 
%0 Journal Article
%A El-Deeb, A. A. 
%A Cheung, Wing-Sum 
%T A variety of dynamic inequalities on time scales with retardation
%J Journal of nonlinear sciences and its applications
%D 2018
%P 1185-1206
%V 11
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.10.07/
%R 10.22436/jnsa.011.10.07
%G en
%F JNSA_2018_11_10_a6
El-Deeb, A. A. ; Cheung, Wing-Sum . A variety of dynamic inequalities on time scales with retardation. Journal of nonlinear sciences and its applications, Tome 11 (2018) no. 10, p. 1185-1206. doi : 10.22436/jnsa.011.10.07. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.10.07/

[1] Abdeldaim, A.; El-Deeb, A. A. On generalized of certain retarded nonlinear integral inequalities and its applications in retarded integro-differential equations, Appl. Math. Comput., Volume 256 (2015), pp. 375-380 | DOI | Zbl

[2] Abdeldaim, A.; El-Deeb, A. A. On some new nonlinear retarded integral inequalities with iterated integrals and their applications in integro-differential equations, British J. Math. Comput. Science, Volume 5 (2015), pp. 479-491

[3] Abdeldaim, A.; El-Deeb, A. A. On some generalizations of certain retarded nonlinear integral inequalities with iterated integrals and an application in retarded differential equation, J. Egyptian Math. Soc., Volume 23 (2015), pp. 470-475 | DOI | Zbl

[4] Abdeldaim, A.; El-Deeb, A. A. Some new retarded nonlinear integral inequalities with iterated integrals and their applications in retarded differential equations and integral equations, J. Fract. Calc. Appl., Volume 5 (2014), pp. 1-9 | DOI

[5] Akin-Bohner, E.; Bohner, M.; Akin, F. Pachpatte inequalities on time scales, JIPAM J. Inequal. Pure Appl. Math., Volume 6 (2005), pp. 1443-5756

[6] Anderson, D. R. Dynamic double integral inequalities in two independent variables on time scales, J. Math. Inequal., Volume 2 (2008), pp. 163-184 | Zbl

[7] Bellman, R. The stability of solutions of linear differential equations, Duke Math. J., Volume 10 (1943), pp. 643-647

[8] Bihari, I. A generalization of a lemma of Bellman and its application to uniqueness problems of differential equations, Acta Math. Acad. Sci. Hungar., Volume 7 (1956), pp. 81-94 | Zbl

[9] Bohner, M.; Peterson, A. Advances in dynamic equations on time scales, Birkhäuser Boston, Boston, 2003 | DOI

[10] Bohner, M.; Peterson, A. Dynamic equations on time scales, Birkhäuser Boston, Boston, 2001 | DOI

[11] El-Owaidy, H. M.; Ragab, A. A.; El-Deeb, A. A.; Abuelela, W. M. K. On some new nonlinear integral inequalities of Gronwall-Bellman type, Kyungpook Math. J., Volume 54 (2014), pp. 555-575

[12] Gronwall, T. H. Note on the derivatives with respect to a parameter of the solutions of a system of differential equations, Ann. of Math., Volume 20 (1919), pp. 292-296 | DOI

[13] Hilger, S. Analysis on measure chains-a unified approach to continuous and discrete calculus, Results Math., Volume 18 (1990), pp. 18-56 | Zbl | DOI

[14] W. N. Li Some new dynamic inequalities on time scales, J. Math. Anal. Appl., Volume 319 (2006), pp. 802-814 | DOI

[15] Li, W. N. Some Pachpatte type inequalities on time scales, Comput. Math. Appl., Volume 57 (2009), pp. 275-282 | DOI

[16] Li, W. N. Some nonlinear delay integral inequalities and their analogues, An. St. Univ. Ovidius Constanta Ser. Mat., Volume 18 (2010), pp. 149-160 | Zbl

[17] Li, W. N.; Han, M. Bounds for certain nonlinear dynamic inequalities on time scales , Discrete Dyn. Nat. Soc., Volume 2009 (2009), pp. 1-14

[18] Li, W. N.; Zhang, Q. X.; Qiu, F. Some nonlinear delay discrete inequalities and their applications, Demonstratio Math., Volume 39 (2006), pp. 771-782 | DOI

[19] Liu, A.; Bohner, M. Gronwall-OuIang-type integral inequalities on time scales, J. Inequal. Appl., Volume 2010 (2010), pp. 1-15 | DOI | Zbl

[20] Ma, Q.-H.; Pecaric, J. Explicit bounds on some new nonlinear retarded integral inequalities and their applications, Taiwanese J. Math., Volume 13 (2009), pp. 287-306 | DOI | Zbl

[21] Mitrinovic, D. S.; Vasic, P. M. Analytic inequalities, Springer, Berlin, 1970 | DOI

[22] Pachpatte, B. G. Explicit bounds on certain integral inequalities, J. Math. Anal. Appl., Volume 267 (2002), pp. 48-61 | DOI

[23] Pachpatte, B. G. Inequalities for differential and integral equations, Academic Press, San Diego, 1998

[24] Pachpatte, B. G. Integral and finite difference inequalities and applications, Elsevier, Elsevier, 2006

[25] Pachpatte, B. G. On some new inequalities related to a certain inequality arising in the theory of differential equations, J. Math. Anal. Appl., Volume 251 (2000), pp. 736-751 | DOI | Zbl

[26] Pachpatte, B. G. On some fundamental integral inequalities and their discrete analogues, JIPAM. J. Inequal. Pure Appl. Math., Volume 2 (2001), pp. 1-13 | Zbl

[27] Saker, S. H. Some nonlinear dynamic inequalities on time scales and applications, J. Math. Inequal., Volume 4 (2010), pp. 561-579

[28] Wong, F.-H.; Yeh, C.-C.; Hong, C.-H. Gronwall inequalities on time scales, Math. Inequal. Appl., Volume 9 (2006), pp. 75-86

[29] Yin, L.; Luo, Q.-M.; Qi, F. Several integral inequalities on time scales, J. Math. Inequal., Volume 6 (2012), pp. 419-429

Cité par Sources :