A new muth generated family of distributions with applications
Journal of nonlinear sciences and its applications, Tome 11 (2018) no. 10, p. 1171-1184.

Voir la notice de l'article provenant de la source International Scientific Research Publications

A new family of distributions called the Muth family of distributions is introduced and studied. Five special submodels of the proposed family are discussed. Some mathematical properties of the Muth family are studied. Explicit expressions for the probability weighted, moments, mean deviation and order statistics are investigated. Maximum likelihood procedure is used to estimate the unknown parameters. One real data set is employed to show the usefulness of the new family.
DOI : 10.22436/jnsa.011.10.06
Classification : 60E05, 62E10, 62N05
Keywords: Muth distribution, Weibull distribution, moments, order statistics, maximum likelihood estimation

Almarashi, Abdullah M.  1 ; Elgarhy, M.  2

1 Statistics Department, Faculty of Science, King AbdulAziz University, Jeddah, Kingdom of Saudi Arabia
2 Vice Presidency for Graduate Studies and Scientific Research, University of Jeddah, Jeddah, Kingdom of Saudi Arabia
@article{JNSA_2018_11_10_a5,
     author = {Almarashi, Abdullah  M.  and Elgarhy, M. },
     title = {A new muth generated family of distributions with applications},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {1171-1184},
     publisher = {mathdoc},
     volume = {11},
     number = {10},
     year = {2018},
     doi = {10.22436/jnsa.011.10.06},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.10.06/}
}
TY  - JOUR
AU  - Almarashi, Abdullah  M. 
AU  - Elgarhy, M. 
TI  - A new muth generated family of distributions with applications
JO  - Journal of nonlinear sciences and its applications
PY  - 2018
SP  - 1171
EP  - 1184
VL  - 11
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.10.06/
DO  - 10.22436/jnsa.011.10.06
LA  - en
ID  - JNSA_2018_11_10_a5
ER  - 
%0 Journal Article
%A Almarashi, Abdullah  M. 
%A Elgarhy, M. 
%T A new muth generated family of distributions with applications
%J Journal of nonlinear sciences and its applications
%D 2018
%P 1171-1184
%V 11
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.10.06/
%R 10.22436/jnsa.011.10.06
%G en
%F JNSA_2018_11_10_a5
Almarashi, Abdullah  M. ; Elgarhy, M. . A new muth generated family of distributions with applications. Journal of nonlinear sciences and its applications, Tome 11 (2018) no. 10, p. 1171-1184. doi : 10.22436/jnsa.011.10.06. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.10.06/

[1] Abouelmagd, T. H. M.; Al-mualim, S.; Elgarhy, M.; Afify, A. Z.; Ahmad, M. Properties of the four-parameter Weibull distribution and its Applications, Pakistan J. Statist., Volume 33 (2017), pp. 449-466

[2] Al-Shomrani, A.; Arif, O.; Shawky, A.; Hanif, S.; Shahbaz, M. Q. Topp-Leone family of distributions: Some properties and application, Pak. J. Stat. Oper. Res., Volume 12 (2016), pp. 443-451

[3] Alzaatreh, A.; Lee, C.; Famoye, F. A new method for generating families of continuous distributions, Metron, Volume 71 (2013), pp. 63-79 | DOI | Zbl

[4] Bourguignon, M.; Silva, R. B.; Cordeiro, G. M. The Weibull-G family of probability distributions, J. Data Sci., Volume 12 (2014), pp. 53-68

[5] Cordeiro, G. M.; Alizadeh, M.; Marinho, P. R. D. The type I half-logistic family of distributions, J. Stat. Comput. Simul., Volume 86 (2016), pp. 707-728 | DOI

[6] Cordeiro, G. M.; Alizadeh, M.; Ortega, E. M. M. The exponentiated half-logistic family of distributions: properties and applications, J. Probab. Stat., Volume 2014 (2014), pp. 1-21 | Zbl

[7] Cordeiro, G. M.; Alizadeh, M.; Ozel, G.; Hosseini, B.; Ortega, E. M. M.; E. Altun The generalized odd log-logistic family of distributions: properties, regression models and applications, J. Stat. Comput. Simul., Volume 87 (2017), pp. 908-932 | DOI

[8] Cordeiro, G. M.; Hashimoto, E. M.; Ortega, E. M. M. The McDonald Weibull model, Statistics, Volume 48 (2014), pp. 256-278 | DOI

[9] Elgarhy, M.; Hassan, A. S.; M. Rashed Garhy-generated family of distributions with application, Math. Theory Model, Volume 6 (2016), pp. 1-15

[10] Eugene, N.; Lee, C.; Famoye, F. Beta-normal distribution and its applications, Comm. Statist. Theory Methods, Volume 31 (2002), pp. 497-512 | DOI

[11] Haq, M. A.; Elgarhy, M. The odd Frchet-G family of probability distributions, J. Stat. Appl. Prob., Volume 7 (2018), pp. 185-201

[12] Hassan, A. S.; Elgarhy, M. A New Family of Exponentiated Weibull-Generated Distributions, Int. J. Math. Appl., Volume 4 (2016), pp. 135-148

[13] Hassan, A. S.; Elgarhy, M. KumaraswamyWeibull-generated family of distributions with applications, Adv. Appl. Statist., Volume 48 (2016), pp. 205-239

[14] Hassan, A. S.; Elgarhy, M.; Shakil, M. Type II half Logistic family of distributions with applications, Pak. J. Stat. Oper. Res., Volume 13 (2017), pp. 245-264

[15] Lee, C.; Famoye, F.; Olumolade, O. Beta-Weibull distribution: some properties and applications to censored data, J. Mod. Appl. Stat. Meth., Volume 6 (2007), pp. 173-186

[16] Mudholkar, G. S.; Srivastava, D. K. Exponentiated Weibull family for analysing bathtub failure rate data, IEEE T. Reliab, Volume 42 (1993), pp. 299-302 | DOI

[17] Muth, J. E. Reliability models with positive memory derived from the mean residual life function, C.P. Tsokos, I. N. Shimi (Eds.), Theory and Applications of Reliability, Academic Press (1977), pp. 401-434

[18] Ristic, M. M.; Balakrishnan, N. The gamma-exponentiated exponential distribution, J. Stat. Comput. Simul., Volume 82 (2012), pp. 1191-1206 | DOI

Cité par Sources :