Voir la notice de l'article provenant de la source International Scientific Research Publications
Almarashi, Abdullah M.  1 ; Elgarhy, M.  2
@article{JNSA_2018_11_10_a5, author = {Almarashi, Abdullah M. and Elgarhy, M. }, title = {A new muth generated family of distributions with applications}, journal = {Journal of nonlinear sciences and its applications}, pages = {1171-1184}, publisher = {mathdoc}, volume = {11}, number = {10}, year = {2018}, doi = {10.22436/jnsa.011.10.06}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.10.06/} }
TY - JOUR AU - Almarashi, Abdullah M. AU - Elgarhy, M. TI - A new muth generated family of distributions with applications JO - Journal of nonlinear sciences and its applications PY - 2018 SP - 1171 EP - 1184 VL - 11 IS - 10 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.10.06/ DO - 10.22436/jnsa.011.10.06 LA - en ID - JNSA_2018_11_10_a5 ER -
%0 Journal Article %A Almarashi, Abdullah M. %A Elgarhy, M. %T A new muth generated family of distributions with applications %J Journal of nonlinear sciences and its applications %D 2018 %P 1171-1184 %V 11 %N 10 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.10.06/ %R 10.22436/jnsa.011.10.06 %G en %F JNSA_2018_11_10_a5
Almarashi, Abdullah M. ; Elgarhy, M. . A new muth generated family of distributions with applications. Journal of nonlinear sciences and its applications, Tome 11 (2018) no. 10, p. 1171-1184. doi : 10.22436/jnsa.011.10.06. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.10.06/
[1] Properties of the four-parameter Weibull distribution and its Applications, Pakistan J. Statist., Volume 33 (2017), pp. 449-466
[2] Topp-Leone family of distributions: Some properties and application, Pak. J. Stat. Oper. Res., Volume 12 (2016), pp. 443-451
[3] A new method for generating families of continuous distributions, Metron, Volume 71 (2013), pp. 63-79 | DOI | Zbl
[4] The Weibull-G family of probability distributions, J. Data Sci., Volume 12 (2014), pp. 53-68
[5] The type I half-logistic family of distributions, J. Stat. Comput. Simul., Volume 86 (2016), pp. 707-728 | DOI
[6] The exponentiated half-logistic family of distributions: properties and applications, J. Probab. Stat., Volume 2014 (2014), pp. 1-21 | Zbl
[7] The generalized odd log-logistic family of distributions: properties, regression models and applications, J. Stat. Comput. Simul., Volume 87 (2017), pp. 908-932 | DOI
[8] The McDonald Weibull model, Statistics, Volume 48 (2014), pp. 256-278 | DOI
[9] Garhy-generated family of distributions with application, Math. Theory Model, Volume 6 (2016), pp. 1-15
[10] Beta-normal distribution and its applications, Comm. Statist. Theory Methods, Volume 31 (2002), pp. 497-512 | DOI
[11] The odd Frchet-G family of probability distributions, J. Stat. Appl. Prob., Volume 7 (2018), pp. 185-201
[12] A New Family of Exponentiated Weibull-Generated Distributions, Int. J. Math. Appl., Volume 4 (2016), pp. 135-148
[13] KumaraswamyWeibull-generated family of distributions with applications, Adv. Appl. Statist., Volume 48 (2016), pp. 205-239
[14] Type II half Logistic family of distributions with applications, Pak. J. Stat. Oper. Res., Volume 13 (2017), pp. 245-264
[15] Beta-Weibull distribution: some properties and applications to censored data, J. Mod. Appl. Stat. Meth., Volume 6 (2007), pp. 173-186
[16] Exponentiated Weibull family for analysing bathtub failure rate data, IEEE T. Reliab, Volume 42 (1993), pp. 299-302 | DOI
[17] Reliability models with positive memory derived from the mean residual life function, C.P. Tsokos, I. N. Shimi (Eds.), Theory and Applications of Reliability, Academic Press (1977), pp. 401-434
[18] The gamma-exponentiated exponential distribution, J. Stat. Comput. Simul., Volume 82 (2012), pp. 1191-1206 | DOI
Cité par Sources :