Voir la notice de l'article provenant de la source International Scientific Research Publications
Srivastava, H. M.  1 ; Savaş, Ekrem  2 ; Patterson, Richard F.  3
@article{JNSA_2018_11_10_a4, author = {Srivastava, H. M. and Sava\c{s}, Ekrem and Patterson, Richard F. }, title = {Inclusion theorems associated with a certain new family of asymptotically and statistically equivalent functions}, journal = {Journal of nonlinear sciences and its applications}, pages = {1161-1170}, publisher = {mathdoc}, volume = {11}, number = {10}, year = {2018}, doi = {10.22436/jnsa.011.10.05}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.10.05/} }
TY - JOUR AU - Srivastava, H. M. AU - Savaş, Ekrem AU - Patterson, Richard F. TI - Inclusion theorems associated with a certain new family of asymptotically and statistically equivalent functions JO - Journal of nonlinear sciences and its applications PY - 2018 SP - 1161 EP - 1170 VL - 11 IS - 10 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.10.05/ DO - 10.22436/jnsa.011.10.05 LA - en ID - JNSA_2018_11_10_a4 ER -
%0 Journal Article %A Srivastava, H. M. %A Savaş, Ekrem %A Patterson, Richard F. %T Inclusion theorems associated with a certain new family of asymptotically and statistically equivalent functions %J Journal of nonlinear sciences and its applications %D 2018 %P 1161-1170 %V 11 %N 10 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.10.05/ %R 10.22436/jnsa.011.10.05 %G en %F JNSA_2018_11_10_a4
Srivastava, H. M. ; Savaş, Ekrem ; Patterson, Richard F. . Inclusion theorems associated with a certain new family of asymptotically and statistically equivalent functions. Journal of nonlinear sciences and its applications, Tome 11 (2018) no. 10, p. 1161-1170. doi : 10.22436/jnsa.011.10.05. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.10.05/
[1] Statistical \(\Lambda\)-convergence in probabilistic normed spaces, J. Funct. Spaces, Volume 2017 (2017), pp. 1-7 | Zbl | DOI
[2] \(\Lambda^2\)-Weighted statistical convergence and Korovkin and Voronovskaya type theorems, Appl. Math. Comput., Volume 266 (2015), pp. 675-686 | DOI
[3] A study on statistical convergence, Funct. Anal. Approx. Comput., Volume 1 (2009), pp. 19-24
[4] Lacunary statistical and sliding window convergence for measurable functions, Acta Math. Hungar, Volume 145 (2015), pp. 416-432 | DOI | Zbl
[5] I- and I*-convergence of double sequences, Math. Slovaca, Volume 58 (2008), pp. 605-620 | DOI
[6] On generalizations of certain summability methods using ideals , Appl. Math. Lett., Volume 24 (2011), pp. 1509-1514 | DOI | Zbl
[7] On I-Cauchy sequences, Real Anal. Exchange, Volume 30 (2004/2005), pp. 123-128 | Zbl
[8] Sur la convergence ststistique, Colloq. Math., Volume 2 (1951), pp. 241-244 | EuDML
[9] Some Cesàro type summability spaces, Proc. London Math. Soc., Volume 37 (1978), pp. 508-520 | DOI
[10] On statistical convergence, Analysis, Volume 5 (1985), pp. 301-313 | DOI
[11] On \(S^L_\lambda(I)\)-asymptotically statistical equivalent sequences , Proceedings of the International Conference on Numerical Analysis and Applied Mathematics (ICNAAM 2012), Volume 2012 (2012), pp. 936-941 | DOI
[12] On weighted statistical convergence based on (p, q)-integers and related approximation theorems for functions of two variables, J. Math. Anal. Appl., Volume 443 (2016), pp. 752-764 | DOI | Zbl
[13] Statistical weighted B-summability and its applications to approximation theorems, Appl. Math. Comput., Volume 302 (2017), pp. 80-96 | DOI
[14] I-convergence, Real Anal. Exchange, Volume 26 (2000), pp. 669-686 | Zbl
[15] On asymptotically generalized statistical equivalent sequences via ideal, Tamkang J. Math., Volume 43 (2012), pp. 469-478 | Zbl
[16] I- and I*-convergence in topological spaces, Math. Bohem., Volume 130 (2005), pp. 153-160
[17] Asymptotic equivalence of sequences and summability, Internat. J. Math. Math. Sci., Volume 20 (1997), pp. 749-758
[18] Asymptotic equivalence and summability, Internat. J. Math. Sci., Volume 16 (1993), pp. 755-762
[19] \(\lambda\)-Statistical convergence, Math. Slovaca, Volume 50 (2000), pp. 111-115
[20] On \(\jmath\)-convergence in random 2-normed spaces, Math. Slovaca, Volume 61 (2011), pp. 933-940 | DOI
[21] Weighted statistical convergence and its application to Korovkin type approximation theorem, Appl. Math. Comput., Volume 218 (2012), pp. 9132-9137 | DOI
[22] On ideal convergence in probabilistic normed spaces, Math. Slovaca, Volume 62 (2012), pp. 49-62 | DOI
[23] Generalized statistically convergent sequences of fuzzy numbers, J. Intelligent Fuzzy Systems, Volume 30 (2016), pp. 1511-1518 | DOI | Zbl
[24] \(\lambda\)-Strongly summable and \(\lambda\)-statistically convergent functions, Iranian J. Sci. Tech. Trans. A Sci., Volume 34 (2010), pp. 335-339
[25] On asymptotically statistically equivalent sequences, Demostratio Math., Volume 6 (2003), pp. 149-153 | DOI
[26] Ideal convergence in 2-normed spaces, Taiwanese J. Math., Volume 11 (2007), pp. 1477-1484 | DOI | Zbl
[27] On statistically convergent sequences of real numbers, Math. Slovaca, Volume 30 (1980), pp. 139-150
[28] A-sequence spaces in 2-normed space defined by ideal convergence and an Orlicz function, Abstr. Appl. Anal., Volume 2011 (2011), pp. 1-9 | Zbl
[29] Generalized summability methods of functions using ideals, Proceedings of the International Conference on Advancements in Mathematical Sciences (Antalya, Turkey), Volume 2015 (2015), pp. 1-5 | DOI
[30] On some new sequence spaces in 2-normed spaces using ideal convergence and an Orlicz function, J. Inequal. Appl., Volume 2010 (2010), pp. 1-8 | Zbl | DOI
[31] On generalized statistical convergence in random 2-normed space, Iran. J. Sci. Technol. Trans. A Sci., Volume 36 (2012), pp. 417-423 | Zbl
[32] On \(\jmath\)-asymptotically lacunary statistical equivalent sequences, Adv. Difference Equ., Volume 2013 (2013), pp. 1-7 | DOI
[33] On generalized statistically convergent function via ideals, Appl. Math. Inform. Sci., Volume 10 (2016), pp. 943-947
[34] \(\Delta^m\)-Strongly summable sequences spaces in 2-normed spaces defined by ideal convergence and an Orlicz function, Appl. Math. Comput., Volume 217 (2010), pp. 271-276 | DOI | Zbl
[35] (\(\sigma,\lambda\))-Asymptotically statistical equivalent sequences, Filomat, Volume 20 (2006), pp. 35-42 | Zbl | DOI
[36] A generalized statistical convergence via ideals, Appl. Math. Lett., Volume 24 (2011), pp. 826-830 | DOI
[37] A generalization on \(\jmath\)-asymptotically lacunary statistical equivalent sequences, J. Inequal. Appl., Volume 2013 (2013), pp. 1-9 | DOI | Zbl
[38] The integrability of certain functions and related summability methods, Amer. Math. Monthly, Volume 66 (1959), pp. 361-375 | DOI | Zbl
[39] Lacunary statistical convergence and strongly lacunary summable functions of order \(\alpha\), Filomat, Volume 31 (2017), pp. 1573-1582 | DOI
Cité par Sources :