Inclusion theorems associated with a certain new family of asymptotically and statistically equivalent functions
Journal of nonlinear sciences and its applications, Tome 11 (2018) no. 10, p. 1161-1170.

Voir la notice de l'article provenant de la source International Scientific Research Publications

The aim of this paper is to introduce and investigate some new definitions which are interrelated to the notions of asymptotically $ I_\lambda$-statistical equivalence of multiple $L$ and strongly $I_\lambda$-asymptotic equivalence of multiple $L$. Indeed, instead of sequences, the authors make use of two nonnegative real-valued Lebesgue measurable functions in the open interval $(1,\infty)$ and present a series of inclusion theorems associated with these new definitions. Furthermore, in connection with one of the main results which are proven in this paper, a closely-related $open$ $problem$ is posed for the interested reader.
DOI : 10.22436/jnsa.011.10.05
Classification : 40H05, 40C05
Keywords: Ideals and filters, \(\mathcal{I}\)-statistical convergence, \(I_{\lambda}\)-statistical convergence, \(\lambda\)-statistical convergence, de la Vallée Poussin method

Srivastava, H. M.  1 ; Savaş, Ekrem  2 ; Patterson, Richard F.  3

1 University of Victoria, Department of Mathematics and Statistics, University of Victoria, Victoria, British Columbia V8W 3R4, Canada \(\&\) Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan, Republic of China, Victoria, British Columbia V8W 3R4, Canada;Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan, Republic of China
2 department of Mathematics, Istanbul Ticaret (Commerce) University, Sutluce (Beyglu), TR-34672 Uskudar-Istanbul, Turkey
3 Department of Mathematics and Statistics, University of North Florida, Jacksonville, Florida 32224, U. S. A.
@article{JNSA_2018_11_10_a4,
     author = {Srivastava, H. M.  and Sava\c{s}, Ekrem  and Patterson, Richard F. },
     title = {Inclusion theorems associated with a certain new family of asymptotically and statistically equivalent functions},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {1161-1170},
     publisher = {mathdoc},
     volume = {11},
     number = {10},
     year = {2018},
     doi = {10.22436/jnsa.011.10.05},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.10.05/}
}
TY  - JOUR
AU  - Srivastava, H. M. 
AU  - Savaş, Ekrem 
AU  - Patterson, Richard F. 
TI  - Inclusion theorems associated with a certain new family of asymptotically and statistically equivalent functions
JO  - Journal of nonlinear sciences and its applications
PY  - 2018
SP  - 1161
EP  - 1170
VL  - 11
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.10.05/
DO  - 10.22436/jnsa.011.10.05
LA  - en
ID  - JNSA_2018_11_10_a4
ER  - 
%0 Journal Article
%A Srivastava, H. M. 
%A Savaş, Ekrem 
%A Patterson, Richard F. 
%T Inclusion theorems associated with a certain new family of asymptotically and statistically equivalent functions
%J Journal of nonlinear sciences and its applications
%D 2018
%P 1161-1170
%V 11
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.10.05/
%R 10.22436/jnsa.011.10.05
%G en
%F JNSA_2018_11_10_a4
Srivastava, H. M. ; Savaş, Ekrem ; Patterson, Richard F. . Inclusion theorems associated with a certain new family of asymptotically and statistically equivalent functions. Journal of nonlinear sciences and its applications, Tome 11 (2018) no. 10, p. 1161-1170. doi : 10.22436/jnsa.011.10.05. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.10.05/

[1] Aldhaifallah, M.; Nisar, K. S.; Srivastava, H. M.; Mursaleen, M. Statistical \(\Lambda\)-convergence in probabilistic normed spaces, J. Funct. Spaces, Volume 2017 (2017), pp. 1-7 | Zbl | DOI

[2] Braha, N. L.; Loku, V.; Srivastava, H. M. \(\Lambda^2\)-Weighted statistical convergence and Korovkin and Voronovskaya type theorems, Appl. Math. Comput., Volume 266 (2015), pp. 675-686 | DOI

[3] Cakalli, H. A study on statistical convergence, Funct. Anal. Approx. Comput., Volume 1 (2009), pp. 19-24

[4] Connor, J.; Savaş, E. Lacunary statistical and sliding window convergence for measurable functions, Acta Math. Hungar, Volume 145 (2015), pp. 416-432 | DOI | Zbl

[5] Das, P.; Kostyrko, P.; Wilczynski, W.; Malik, P. I- and I*-convergence of double sequences, Math. Slovaca, Volume 58 (2008), pp. 605-620 | DOI

[6] Das, P.; Savaş, E.; Ghosal, S. K. On generalizations of certain summability methods using ideals , Appl. Math. Lett., Volume 24 (2011), pp. 1509-1514 | DOI | Zbl

[7] Dems, K. On I-Cauchy sequences, Real Anal. Exchange, Volume 30 (2004/2005), pp. 123-128 | Zbl

[8] Fast, H. Sur la convergence ststistique, Colloq. Math., Volume 2 (1951), pp. 241-244 | EuDML

[9] Freedman, A. R.; Sember, J. J.; Raphael, M. Some Cesàro type summability spaces, Proc. London Math. Soc., Volume 37 (1978), pp. 508-520 | DOI

[10] Fridy, J. A. On statistical convergence, Analysis, Volume 5 (1985), pp. 301-313 | DOI

[11] Gumuş, H.; Savaş, E. On \(S^L_\lambda(I)\)-asymptotically statistical equivalent sequences , Proceedings of the International Conference on Numerical Analysis and Applied Mathematics (ICNAAM 2012), Volume 2012 (2012), pp. 936-941 | DOI

[12] Kadak, U. On weighted statistical convergence based on (p, q)-integers and related approximation theorems for functions of two variables, J. Math. Anal. Appl., Volume 443 (2016), pp. 752-764 | DOI | Zbl

[13] Kadak, U.; Braha, N. L.; Srivastava, H. M. Statistical weighted B-summability and its applications to approximation theorems, Appl. Math. Comput., Volume 302 (2017), pp. 80-96 | DOI

[14] Kostyrko, P.; Wilczynski, W.; Salat, T. I-convergence, Real Anal. Exchange, Volume 26 (2000), pp. 669-686 | Zbl

[15] Kumar, V.; Sharma, A. On asymptotically generalized statistical equivalent sequences via ideal, Tamkang J. Math., Volume 43 (2012), pp. 469-478 | Zbl

[16] Lahiri, B. K.; Das, P. I- and I*-convergence in topological spaces, Math. Bohem., Volume 130 (2005), pp. 153-160

[17] Li, J. L. Asymptotic equivalence of sequences and summability, Internat. J. Math. Math. Sci., Volume 20 (1997), pp. 749-758

[18] Marouf, M. Asymptotic equivalence and summability, Internat. J. Math. Sci., Volume 16 (1993), pp. 755-762

[19] Mursaleen, M. \(\lambda\)-Statistical convergence, Math. Slovaca, Volume 50 (2000), pp. 111-115

[20] Mursaleen, M.; Alotaibi, A. On \(\jmath\)-convergence in random 2-normed spaces, Math. Slovaca, Volume 61 (2011), pp. 933-940 | DOI

[21] Mursaleen, M.; Karakaya, V.; Ertürk, M.; Gürsoy, F. Weighted statistical convergence and its application to Korovkin type approximation theorem, Appl. Math. Comput., Volume 218 (2012), pp. 9132-9137 | DOI

[22] Mursaleen, M.; Mohiuddine, S. A. On ideal convergence in probabilistic normed spaces, Math. Slovaca, Volume 62 (2012), pp. 49-62 | DOI

[23] Mursaleen, M.; Srivastava, H. M.; Sharma, S. K. Generalized statistically convergent sequences of fuzzy numbers, J. Intelligent Fuzzy Systems, Volume 30 (2016), pp. 1511-1518 | DOI | Zbl

[24] Nuray, F. \(\lambda\)-Strongly summable and \(\lambda\)-statistically convergent functions, Iranian J. Sci. Tech. Trans. A Sci., Volume 34 (2010), pp. 335-339

[25] Patterson, R. F. On asymptotically statistically equivalent sequences, Demostratio Math., Volume 6 (2003), pp. 149-153 | DOI

[26] Sahiner, A.; Gurdal, M.; Saltan, S.; Gunawan, H. Ideal convergence in 2-normed spaces, Taiwanese J. Math., Volume 11 (2007), pp. 1477-1484 | DOI | Zbl

[27] Salat, T. On statistically convergent sequences of real numbers, Math. Slovaca, Volume 30 (1980), pp. 139-150

[28] Savaş, E. A-sequence spaces in 2-normed space defined by ideal convergence and an Orlicz function, Abstr. Appl. Anal., Volume 2011 (2011), pp. 1-9 | Zbl

[29] Savaş, E. Generalized summability methods of functions using ideals, Proceedings of the International Conference on Advancements in Mathematical Sciences (Antalya, Turkey), Volume 2015 (2015), pp. 1-5 | DOI

[30] Savaş, E. On some new sequence spaces in 2-normed spaces using ideal convergence and an Orlicz function, J. Inequal. Appl., Volume 2010 (2010), pp. 1-8 | Zbl | DOI

[31] Savaş, E. On generalized statistical convergence in random 2-normed space, Iran. J. Sci. Technol. Trans. A Sci., Volume 36 (2012), pp. 417-423 | Zbl

[32] Savaş, E. On \(\jmath\)-asymptotically lacunary statistical equivalent sequences, Adv. Difference Equ., Volume 2013 (2013), pp. 1-7 | DOI

[33] Savaş, E. On generalized statistically convergent function via ideals, Appl. Math. Inform. Sci., Volume 10 (2016), pp. 943-947

[34] Savaş, E. \(\Delta^m\)-Strongly summable sequences spaces in 2-normed spaces defined by ideal convergence and an Orlicz function, Appl. Math. Comput., Volume 217 (2010), pp. 271-276 | DOI | Zbl

[35] Savaş, R.; Basarir, M. (\(\sigma,\lambda\))-Asymptotically statistical equivalent sequences, Filomat, Volume 20 (2006), pp. 35-42 | Zbl | DOI

[36] Savaş, E.; Das, P. A generalized statistical convergence via ideals, Appl. Math. Lett., Volume 24 (2011), pp. 826-830 | DOI

[37] Savaş, E.; Gumuş, H. A generalization on \(\jmath\)-asymptotically lacunary statistical equivalent sequences, J. Inequal. Appl., Volume 2013 (2013), pp. 1-9 | DOI | Zbl

[38] Schoenberg, I. J. The integrability of certain functions and related summability methods, Amer. Math. Monthly, Volume 66 (1959), pp. 361-375 | DOI | Zbl

[39] Srivastava, H. M.; Et, M. Lacunary statistical convergence and strongly lacunary summable functions of order \(\alpha\), Filomat, Volume 31 (2017), pp. 1573-1582 | DOI

Cité par Sources :