Existence and uniqueness of weak positive solution for essential singular elliptic problem involving the square root of the Laplacian
Journal of nonlinear sciences and its applications, Tome 11 (2018) no. 10, p. 1149-1160.

Voir la notice de l'article provenant de la source International Scientific Research Publications

In this paper we consider the existence and uniqueness of weak positive solution for nonlocal equations of the square root of the Laplacian with singular nonlinearity. The remarkable feature of this paper is the fact that the natural associated functional fails to be Frechet differentiable, critical point theory could not be applied to obtain the existence of weak positive solution. We first establish the priori estimate of weak solution of approximating problems. Then the weak positive solution is constructed by combining sub-and supersolutions method and truncate technology.
DOI : 10.22436/jnsa.011.10.04
Classification : 35J75, 47J05, 35J25
Keywords: Fractional Laplacian, essential singular nonlinearity, nondifferentiable functional, a priori estimate

Wang, Xing  1 ; Zhang, Li  2

1 School of Science, Xi'an University of Technology, Xi'an, Shaanxi 710054, P. R. China
2 School of Science, Chang'an University, Xi'an, Shaanxi 710064, P. R. China
@article{JNSA_2018_11_10_a3,
     author = {Wang, Xing  and Zhang, Li },
     title = {Existence and uniqueness of weak positive solution for essential singular elliptic problem involving the square root of the {Laplacian}},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {1149-1160},
     publisher = {mathdoc},
     volume = {11},
     number = {10},
     year = {2018},
     doi = {10.22436/jnsa.011.10.04},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.10.04/}
}
TY  - JOUR
AU  - Wang, Xing 
AU  - Zhang, Li 
TI  - Existence and uniqueness of weak positive solution for essential singular elliptic problem involving the square root of the Laplacian
JO  - Journal of nonlinear sciences and its applications
PY  - 2018
SP  - 1149
EP  - 1160
VL  - 11
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.10.04/
DO  - 10.22436/jnsa.011.10.04
LA  - en
ID  - JNSA_2018_11_10_a3
ER  - 
%0 Journal Article
%A Wang, Xing 
%A Zhang, Li 
%T Existence and uniqueness of weak positive solution for essential singular elliptic problem involving the square root of the Laplacian
%J Journal of nonlinear sciences and its applications
%D 2018
%P 1149-1160
%V 11
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.10.04/
%R 10.22436/jnsa.011.10.04
%G en
%F JNSA_2018_11_10_a3
Wang, Xing ; Zhang, Li . Existence and uniqueness of weak positive solution for essential singular elliptic problem involving the square root of the Laplacian. Journal of nonlinear sciences and its applications, Tome 11 (2018) no. 10, p. 1149-1160. doi : 10.22436/jnsa.011.10.04. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.10.04/

[1] Applebaum, D. Lévy processes-from probability to finance and quantum groups, Notices Amer. Math. Soc., Volume 51 (2004), pp. 1336-1347 | Zbl

[2] Barrios, B.; Bonis, I. De; Medina, M.; Peral, I. Semilinear problems for the fractional Laplacian with a singular nonlinearity, Open Math., Volume 13 (2015), pp. 390-407 | Zbl | DOI

[3] Cabré, X.; Tan, J. G. Positive solutions for nonlinear problems involving the square root of the Laplacian, Adv. Math, Volume 224 (2010), pp. 2052-2093 | DOI

[4] Caffarelli, L.; L. Silvestre An extension problem related to the fractional Laplacian, Comm. Partial Differential Equations, Volume 32 (2007), pp. 1245-1260 | DOI

[5] Crandall, M. G.; Rabinowitz, P. H.; Tatar, L. On a Dirichlet problem with a singular nonlinearity, Comm. Partial Differential Equations, Volume 2 (1997), pp. 193-222 | DOI

[6] Fang, Y. Q. Existence, Uniqueness of positive solution to a fractional Laplacians with singular nonlinearity, Analysis of PDEs, Volume 2014 (2014), pp. 1-11

[7] Garroni, A.; Müller, S. \(\Gamma\)-limit of a phase-field model of dislocations, SIAM J. Math. Anal., Volume 36 (2005), pp. 1943-1964 | DOI

[8] Hirano, N.; Saccon, C.; Shioji, N. Existence of multiple positive solutions for singular elliptic problems with concave and convex nonlinearities, Adv. Differential Equations, Volume 9 (2004), pp. 197-220 | Zbl

[9] Lions, J. L.; Magenes, E. Problèmes aux limites non homogènes et applications, Travaux et Recherches Mathématiques, Paris, 1968

[10] Bisci, G. Molica; Radulescu, V. D.; R. Servadei Variational methods for nonlocal fractional problems, Cambridge University Press, Cambridge, 2016 | DOI

[11] Mukherjee, T.; Sreenadh, K. Critical growth fractional elliptic problem with singular nonlinearities, Electron. J. Diff. Equ., Volume 2016 (2016), pp. 1-23

[12] Struwe, M. Variational Methods, Springer-Verlag, Berlin, 1990 | DOI

[13] Stuart, C. A. Existence and approximation of solutions of non-linear elliptic equations, Math. Z., Volume 147 (1976), pp. 53-63 | DOI

[14] Sun, Y. J.; Li, S. J. A nonlinear elliptic equation with critical-exponent: estimates for extremal values , Nonlinear Anal., Volume 69 (2008), pp. 1856-1869 | Zbl | DOI

[15] Sun, Y. J.; Wu, S. P. An exact estimate result for a class of singular equations with critical exponents, J. Funct. Anal., Volume 260 (2011), pp. 1257-1284 | DOI | Zbl

[16] Sun, Y. J.; Wu, S. P.; Long, Y. M. Combined effects of singular and superlinear nonlinearities in some singular boundary value problems, J. Differential Equations, Volume 176 (2011), pp. 511-531 | Zbl | DOI

[17] Wang, X.; Zhao, P. H.; Zhang, L. The existence and multiplicity of classical positive solutions for a singular nonlinear elliptic problem with any growth exponents, Nonlinear Anal., Volume 101 (2014), pp. 37-46 | Zbl | DOI

[18] Wang, X.; Zhao, L.; Zhao, P. H. Combined effects of singular and critical nonlinearities in elliptic problems, Nonlinear Anal., Volume 87 (2013), pp. 1-10 | Zbl | DOI

[19] Xia, A. L.; Yang, J. F. Regularity of nonlinear equations for fractional Laplacian, Proc. Amer. Math. Soc., Volume 141 (2013), pp. 2665-2672 | DOI

[20] Zhang, Z. T. Critical points and positive solutions of singular elliptic boundary value problems, J. Math. Anal. Appl., Volume 302 (2005), pp. 476-483 | DOI

Cité par Sources :