Numerical methods for solving initial value problems of some kinds of nonlinear impulsive fractional differential equations
Journal of nonlinear sciences and its applications, Tome 11 (2018) no. 10, p. 1129-1148.

Voir la notice de l'article provenant de la source International Scientific Research Publications

This article is concerned with the numerical solutions for initial value problems of nonlinear impulsive fractional differential equations which are actively studied recently. In this paper we construct numerical schemes for solving initial value problems of I-type impulsive fractional differential equation and II-type impulsive fractional differential equation and estimate their convergence and stability.
DOI : 10.22436/jnsa.011.10.03
Classification : 65L05, 34A37, 34H05
Keywords: Caputo fractional derivative, impulsive fractional differential equation, difference method, operational matrix method, decomposition method

Jin, Yuanfeng  1 ; Chol, Choehui 2 ; Ae, Paksun 2 ; Song, Jongkum 2 ; Lu, Gang 3

1 Department of Mathematics, Yanbian University, Jilin 133002, China
2 Department of Mathematics, Kim Il-sung University, DPRK
3 Department of Mathematics, School of Science, Shenyang University of Technology, Shenyang 110178, China
@article{JNSA_2018_11_10_a2,
     author = {Jin, Yuanfeng  and Chol, Choehui and Ae, Paksun and Song, Jongkum and Lu, Gang},
     title = {Numerical methods for solving initial value problems of some kinds of nonlinear impulsive fractional differential equations},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {1129-1148},
     publisher = {mathdoc},
     volume = {11},
     number = {10},
     year = {2018},
     doi = {10.22436/jnsa.011.10.03},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.10.03/}
}
TY  - JOUR
AU  - Jin, Yuanfeng 
AU  - Chol, Choehui
AU  - Ae, Paksun
AU  - Song, Jongkum
AU  - Lu, Gang
TI  - Numerical methods for solving initial value problems of some kinds of nonlinear impulsive fractional differential equations
JO  - Journal of nonlinear sciences and its applications
PY  - 2018
SP  - 1129
EP  - 1148
VL  - 11
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.10.03/
DO  - 10.22436/jnsa.011.10.03
LA  - en
ID  - JNSA_2018_11_10_a2
ER  - 
%0 Journal Article
%A Jin, Yuanfeng 
%A Chol, Choehui
%A Ae, Paksun
%A Song, Jongkum
%A Lu, Gang
%T Numerical methods for solving initial value problems of some kinds of nonlinear impulsive fractional differential equations
%J Journal of nonlinear sciences and its applications
%D 2018
%P 1129-1148
%V 11
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.10.03/
%R 10.22436/jnsa.011.10.03
%G en
%F JNSA_2018_11_10_a2
Jin, Yuanfeng ; Chol, Choehui; Ae, Paksun; Song, Jongkum; Lu, Gang. Numerical methods for solving initial value problems of some kinds of nonlinear impulsive fractional differential equations. Journal of nonlinear sciences and its applications, Tome 11 (2018) no. 10, p. 1129-1148. doi : 10.22436/jnsa.011.10.03. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.10.03/

[1] Ahmad, B.; Sivasundaram, S. Existence results for nonlinear impulsive hybrid boundary value problems involving fractional differential equations, Nonlinear Anal. Hybrid Syst., Volume 3 (2009), pp. 251-258 | Zbl | DOI

[2] Balachandran, K.; S. Kiruthika Existence of solutions of abstract fractional impulsive semilinear evolution equations, Electron. J. Qual. Theory Differ. Equ., Volume 2010 (2010), pp. 1-12

[3] Belmekki, M.; Nieto, J. J.; Rodrguez-Lpez, R. Existence of solution to a periodic boundary value problem for a nonlinear impulsive fractional differential equation, Electron. J. Qual. Theory Differ. Equ., Volume 2014 (2014), pp. 1-27

[4] Benchohra, M.; Seba, D. Impulsive fractional differential equations in Banach spaces, Electron. J. Qual. Theory Differ. Equ., Volume 2009 (2009), pp. 1-14

[5] Chang, Y.; Anguraj, A.; Karthikeyan, P. Existence results for initial value problems with integral condition for impulsive fractional differential equations, J. Fract. Calc. Appl., Volume 7 (2012), pp. 1-10

[6] Diethelm, K. The analysis of fractional differential equations , Springer-Verlag, Berlin, 2010 | DOI

[7] Feckan, M.; Zhou, Y.; Wang, J. R. On the concept and existence of solution for impulsive fractional differential equations, Commun. Nonlinear Sci. Numer. Simul., Volume 17 (2012), pp. 3050-3060 | DOI

[8] Gupta, A. K.; Ray, S. S. Wavelet Methods for Solving Fractional Order Differential Equations, Math. Probl. Eng., Volume 2014 (2014), pp. 1-11

[9] Hariharan, G.; Kannan, K. An Overview of Haar Wavelet Method for Solving Differential and Integral Equations, World Appl. Sci. J., Volume 23 (2013), pp. 1-14

[10] Lakshmikantham, V.; Leela, S.; Vasundhara, D. J. Theory of fractional dynamic systems, Cambridge Scientic Publishers, , 2009

[11] Kilbas, A. A.; Srivastava, H. M.; Trujillo, J. J. Theory and applications of fractional differential equations, Elsevier Science B. V., Amsterdam, 2006

[12] Mahto, L.; Abbas, S.; A. Favini Analysis of Caputo impulsive fractional order differential equations with applications, Int. J. Differ. Equ., Volume 2013 (2013), pp. 1-11

[13] Michalski, M. W. Derivatives of noninteger order and their applications, Dissertationes Math. (Rozprawy Mat.), Volume 328 (1993), pp. 1-47

[14] Miller, K. S.; B. Ross An introduction to the fractional calculus and differential equations, John Wiley & Sons, New York, 1993

[15] Neamaty, A.; Agheli, B.; Darzi, R. Solving Fractional Partial Differential Equation by Using Wavelet Operational Method, J. Math. Comput. Sci., Volume 7 (2013), pp. 230-240

[16] Oldham, K. B.; Spanier, J. The Fractional Calculus: Theory and Applications of Differentiation and Integration to Arbitrary Order, Academic Press, New York-London, 1974

[17] Podlubny, I. Fractional differential equations, Academic Press, San Diego, 1999

[18] Randelovic, B. M.; Stefanovic, L. V.; Dankovic, B. M. Numerical solution of impulsive differential equations, Facta Univ. Ser. Math. Inform., Volume 15 (2000), pp. 101-111

[19] Ray, S. S.; Bera, R. K. An approximate solution of a nonlinear fractional differential equation by Adomian decomposition method, Appl. Math. Comput., Volume 167 (2005), pp. 561-571 | DOI

[20] Saeedi, H.; Mollahasani, N.; Moghadam, M. M.; Chuev, G. N. An operational haarwavelet method for solving fractional volterra integral equations, Int. J. Appl. Math. Comput. Sci., Volume 21 (2011), pp. 535-547 | DOI

[21] Tarasov, V. E. Fractional dynamics, Springer (2010) | DOI

[22] Wang, J. R.; Li, X. Z.; Wei, W. On the natural solution of an impulsive fractional differential equation of order q 2 (1, 2), Commun. Nonlinear Sci. Numer. Simul., 17 , 4384–4394., 2012 | Zbl | DOI

[23] G. T. Wang; Zhang, L. H.; Song, G. X. Systems of first order impulsive functional differential equations with deviating arguments and nonlinear boundary conditions, Nonlinear Anal., Volume 74 (2011), pp. 974-982 | Zbl | DOI

[24] Yang, Q. Q.; Liu, F. W.; Turner, I. Stability and convergence of an effective numerical method for the time-space fractional Fokker-Planck equation with a nonlinear source term, Int. J. Differ. Equ., Volume 2012 (2012), pp. 1-22

[25] Zhuang, P.; Liu, F.; Anh, V.; Turner, I. Numerical treatment for the fractional Fokker-Planck equation, ANZIAM J., Volume 48 (2006–2007), pp. 759-774

Cité par Sources :