Voir la notice de l'article provenant de la source International Scientific Research Publications
Gao, Li  1 ; Ma, Tongyi  2 ; Guo, Yuanyuan  1
@article{JNSA_2018_11_10_a0, author = {Gao, Li and Ma, Tongyi and Guo, Yuanyuan }, title = {Dual {Orlicz} mixed geominimal surface area}, journal = {Journal of nonlinear sciences and its applications}, pages = {1113-1123}, publisher = {mathdoc}, volume = {11}, number = {10}, year = {2018}, doi = {10.22436/jnsa.011.10.01}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.10.01/} }
TY - JOUR AU - Gao, Li AU - Ma, Tongyi AU - Guo, Yuanyuan TI - Dual Orlicz mixed geominimal surface area JO - Journal of nonlinear sciences and its applications PY - 2018 SP - 1113 EP - 1123 VL - 11 IS - 10 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.10.01/ DO - 10.22436/jnsa.011.10.01 LA - en ID - JNSA_2018_11_10_a0 ER -
%0 Journal Article %A Gao, Li %A Ma, Tongyi %A Guo, Yuanyuan %T Dual Orlicz mixed geominimal surface area %J Journal of nonlinear sciences and its applications %D 2018 %P 1113-1123 %V 11 %N 10 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.10.01/ %R 10.22436/jnsa.011.10.01 %G en %F JNSA_2018_11_10_a0
Gao, Li ; Ma, Tongyi ; Guo, Yuanyuan . Dual Orlicz mixed geominimal surface area. Journal of nonlinear sciences and its applications, Tome 11 (2018) no. 10, p. 1113-1123. doi : 10.22436/jnsa.011.10.01. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.10.01/
[1] On the reverse Orlicz Busemann-Petty centroid inequality, Adv. in Appl. Math., Volume 47 (2011), pp. 820-828 | Zbl | DOI
[2] Geometric Measure Theory , Springer-Verlag, New York, 1969
[3] Geometric Tomography (second edition), Cambridge University Press, New York, 2006 | DOI
[4] The Orlicz-Brunn-Minkowski theory: a general framework, additions, and inequalities, J. Differential Geom., Volume 97 (2014), pp. 427-476 | DOI | Zbl
[5] Zonoids with minimal volume product: A new proof , Proc. Amer. Math. Soc., Volume 104 (1988), pp. 273-276 | DOI | Zbl
[6] The even Orlicz Minkowski problem, Adv. Math., Volume 224 (2010), pp. 2485-2510 | Zbl | DOI
[7] inequalities , Cambridge University Press, London, 1934
[8] A characterization of affine surface area, Adv. Math., Volume 147 (1999), pp. 138-172 | DOI
[9] Approximation of the Euclidean ball by polytopes, Studia Math., Volume 173 (2006), pp. 1-18
[10] The Brunn-Minkowski-Firey theory. I. Mixed volumes and the Minkowski problem , J. Differential Geom., Volume 38 (1993), pp. 131-150 | Zbl
[11] The Brunn-Minkowski-Firey theory II: affine and geominimal surface areas, Adv. Math., Volume 118 (1996), pp. 244-294 | Zbl | DOI
[12] Volume of mixed bodies, Trans. Am. Math. Soc., Volume 294 (1986), pp. 487-500 | DOI
[13] Lp affine isoperimetric inequalities, J. Differential Geom., Volume 56 (2000), pp. 111-132
[14] Sharp affine Lp Sobolev inequalities, J. Differential Geom., Volume 62 (2002), pp. 17-38 | DOI | Zbl
[15] On the Lp-Minkowski problem, Trans. Amer. Math. Soc., Volume 356 (2004), pp. 4359-4370 | DOI
[16] Orlicz centroid bodies, J. Differential Geom., Volume 84 (2010), pp. 365-387 | Zbl | DOI
[17] Orlicz projection bodies, Adv. Math., Volume 223 (2010), pp. 220-242 | DOI
[18] The Minimal Dual Orlicz Surface Area, Taiwanese J. Math., Volume 20 (2016), pp. 287-309 | Zbl | DOI
[19] Dual Lp-Mixed Geominimal Surface Area and Related Inequalities, J. Funct. Spaces, Volume 2016 (2016), pp. 1-10 | DOI | Zbl
[20] Dual Orlicz geominimal surface area, J. Inequal. Appl., Volume 2016 (2016), pp. 1-13 | Zbl | DOI
[21] On Santalós inequality, in: Geometric Aspects of Functional Analysis, Volume 1989 (1989), pp. 261-263
[22] On the Blaschke–Santalós inequality , Arch. Math., Volume 55 (1990), pp. 82-93 | DOI
[23] Quotient Star Bodies, Intersection Bodies and Star Duality, J. Math. Anal. Appl., Volume 232 (1999), pp. 45-60 | DOI | Zbl
[24] Geominimal surface area , Geometriae Dedicata, Volume 3 (1974), pp. 77-97 | DOI
[25] Zonoids with minimal volume product , Math. Z., Volume 192 (1986), pp. 339-346 | DOI | Zbl
[26] Convex Bodies: The Brunn-Minkowski Theory (Second ed.), Cambridge University Press, Cambridge, 2014 | Zbl | DOI
[27] Convex Bodies: The Brunn-Minkowski Theory, Cambridge University Press, Cambridge, 1993 | DOI
[28] A general Lp-version of Petty’s affine projection inequality, Taiwanese J. Math., Volume 17 (2013), pp. 517-528 | DOI | Zbl
[29] On Lp-affine surface areas, Indiana Univ. Math. J., Volume 56 (2007), pp. 2305-2323
[30] New Lp-affine isoperimetric inequalities, Adv. Math., Volume 218 (2008), pp. 762-780 | DOI
[31] The Orlicz Brunn-Minkowski inequality, Adv. Math., Volume 260 (2014), pp. 350-374 | DOI
[32] Lp intersection bodies , J. Math. Anal. Appl., Volume 338 (2008), pp. 1431-1439 | DOI
[33] Orlicz geominimal surface areas , Math. Inequal. Appl., Volume 18 (2015), pp. 353-362
[34] Brunn-Minkowski inequality for mixed intersection bodies, J. Math. Anal. Appl., Volume 301 (2005), pp. 115-123 | DOI
[35] The Orlicz centroid inequality for star bodies , Adv. in Appl. Math., Volume 48 (2012), pp. 432-445 | Zbl | DOI
[36] On the Lp intersection body , Appl. Math. Mech., Volume 28 (2007), pp. 1669-1678 | DOI
[37] Isoperimetric inequalities for Lp-geominimal surface area, Glasgow Math. J., Volume 53 (2011), pp. 717-726 | DOI
[38] Lp mixed geominimal surface area, J. Math. Anal. Appl., Volume 422 (2015), pp. 1247-1263 | DOI
Cité par Sources :