Dual Orlicz mixed geominimal surface area
Journal of nonlinear sciences and its applications, Tome 11 (2018) no. 10, p. 1113-1123.

Voir la notice de l'article provenant de la source International Scientific Research Publications

Based on the classical ideas, Zhu discussed the properties and useful theories for $L_{p}$-mixed geominimal surface area; meanwhile, Ma defined dual Orlicz geominimal surface area. The previous studies provide a thought to us for the study of the dual Orlicz mixed geominimal surface. In our paper, we have done the following work: attempting to use an integral form to define the dual Orlicz mixed geominimal surface area, further studyding its related properties, and listing some inequalities including Alexandrov-Fenchel type inequality, analogous cyclic inequality, Blaschke-Santaló type inequality, and affine isoperimetric inequality in Orlicz space.
DOI : 10.22436/jnsa.011.10.01
Classification : 52A20, 52A40
Keywords: Star bodies, dual Orlicz mixed geominimal surface area, inequality

Gao, Li  1 ; Ma, Tongyi  2 ; Guo, Yuanyuan  1

1 College of Mathematics and Statistics, Northwest Normal University, Lanzhou, Gansu, 730070, P. R. China
2 College of Mathematics and Statistics, Hexi University, Zhangye, Gansu, 734000, P. R. China
@article{JNSA_2018_11_10_a0,
     author = {Gao, Li  and Ma, Tongyi  and Guo, Yuanyuan },
     title = {Dual {Orlicz} mixed geominimal surface area},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {1113-1123},
     publisher = {mathdoc},
     volume = {11},
     number = {10},
     year = {2018},
     doi = {10.22436/jnsa.011.10.01},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.10.01/}
}
TY  - JOUR
AU  - Gao, Li 
AU  - Ma, Tongyi 
AU  - Guo, Yuanyuan 
TI  - Dual Orlicz mixed geominimal surface area
JO  - Journal of nonlinear sciences and its applications
PY  - 2018
SP  - 1113
EP  - 1123
VL  - 11
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.10.01/
DO  - 10.22436/jnsa.011.10.01
LA  - en
ID  - JNSA_2018_11_10_a0
ER  - 
%0 Journal Article
%A Gao, Li 
%A Ma, Tongyi 
%A Guo, Yuanyuan 
%T Dual Orlicz mixed geominimal surface area
%J Journal of nonlinear sciences and its applications
%D 2018
%P 1113-1123
%V 11
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.10.01/
%R 10.22436/jnsa.011.10.01
%G en
%F JNSA_2018_11_10_a0
Gao, Li ; Ma, Tongyi ; Guo, Yuanyuan . Dual Orlicz mixed geominimal surface area. Journal of nonlinear sciences and its applications, Tome 11 (2018) no. 10, p. 1113-1123. doi : 10.22436/jnsa.011.10.01. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.10.01/

[1] Chen, F. W.; Zhou, J. Z.; Yang, C. Y. On the reverse Orlicz Busemann-Petty centroid inequality, Adv. in Appl. Math., Volume 47 (2011), pp. 820-828 | Zbl | DOI

[2] Federer, H. Geometric Measure Theory , Springer-Verlag, New York, 1969

[3] Gardner, R. J. Geometric Tomography (second edition), Cambridge University Press, New York, 2006 | DOI

[4] Gardner, R. J.; Hug, D.; Weil, W. The Orlicz-Brunn-Minkowski theory: a general framework, additions, and inequalities, J. Differential Geom., Volume 97 (2014), pp. 427-476 | DOI | Zbl

[5] Gordon, Y.; Meyer, M.; Reisner, S. Zonoids with minimal volume product: A new proof , Proc. Amer. Math. Soc., Volume 104 (1988), pp. 273-276 | DOI | Zbl

[6] Haberl, C.; Lutwak, E.; Yang, D.; Zhang, G. Y. The even Orlicz Minkowski problem, Adv. Math., Volume 224 (2010), pp. 2485-2510 | Zbl | DOI

[7] Hardy, G.; Littlewood, J.; Pólya, G. inequalities , Cambridge University Press, London, 1934

[8] Ludwig, M.; Reitzner, M. A characterization of affine surface area, Adv. Math., Volume 147 (1999), pp. 138-172 | DOI

[9] Ludwig, M.; Schütt, C.; Werner, E. Approximation of the Euclidean ball by polytopes, Studia Math., Volume 173 (2006), pp. 1-18

[10] Lutwak, E. The Brunn-Minkowski-Firey theory. I. Mixed volumes and the Minkowski problem , J. Differential Geom., Volume 38 (1993), pp. 131-150 | Zbl

[11] Lutwak, E. The Brunn-Minkowski-Firey theory II: affine and geominimal surface areas, Adv. Math., Volume 118 (1996), pp. 244-294 | Zbl | DOI

[12] Lutwak, E. Volume of mixed bodies, Trans. Am. Math. Soc., Volume 294 (1986), pp. 487-500 | DOI

[13] Lutwak, E.; Yang, D.; Zhang, G. Y. Lp affine isoperimetric inequalities, J. Differential Geom., Volume 56 (2000), pp. 111-132

[14] Lutwak, E.; Yang, D.; Zhang, G. Y. Sharp affine Lp Sobolev inequalities, J. Differential Geom., Volume 62 (2002), pp. 17-38 | DOI | Zbl

[15] Lutwak, E.; Yang, D.; Zhang, G. Y. On the Lp-Minkowski problem, Trans. Amer. Math. Soc., Volume 356 (2004), pp. 4359-4370 | DOI

[16] Lutwak, E.; Yang, D.; Zhang, G. Y. Orlicz centroid bodies, J. Differential Geom., Volume 84 (2010), pp. 365-387 | Zbl | DOI

[17] Lutwak, E.; Yang, D.; Zhang, G. Y. Orlicz projection bodies, Adv. Math., Volume 223 (2010), pp. 220-242 | DOI

[18] Ma, T. Y. The Minimal Dual Orlicz Surface Area, Taiwanese J. Math., Volume 20 (2016), pp. 287-309 | Zbl | DOI

[19] Ma, T. Y.; Feng, Y. B. Dual Lp-Mixed Geominimal Surface Area and Related Inequalities, J. Funct. Spaces, Volume 2016 (2016), pp. 1-10 | DOI | Zbl

[20] Ma, T. Y.; Wang, W. D. Dual Orlicz geominimal surface area, J. Inequal. Appl., Volume 2016 (2016), pp. 1-13 | Zbl | DOI

[21] Meyer, M.; Pajor, A. On Santalós inequality, in: Geometric Aspects of Functional Analysis, Volume 1989 (1989), pp. 261-263

[22] Meyer, M.; A. Pajor On the Blaschke–Santalós inequality , Arch. Math., Volume 55 (1990), pp. 82-93 | DOI

[23] Moszyńska, M. Quotient Star Bodies, Intersection Bodies and Star Duality, J. Math. Anal. Appl., Volume 232 (1999), pp. 45-60 | DOI | Zbl

[24] Petty, C. M. Geominimal surface area , Geometriae Dedicata, Volume 3 (1974), pp. 77-97 | DOI

[25] Reisner, S. Zonoids with minimal volume product , Math. Z., Volume 192 (1986), pp. 339-346 | DOI | Zbl

[26] Schneider, R. Convex Bodies: The Brunn-Minkowski Theory (Second ed.), Cambridge University Press, Cambridge, 2014 | Zbl | DOI

[27] Schneider, R. Convex Bodies: The Brunn-Minkowski Theory, Cambridge University Press, Cambridge, 1993 | DOI

[28] Wang, W. D.; Feng, Y. B. A general Lp-version of Petty’s affine projection inequality, Taiwanese J. Math., Volume 17 (2013), pp. 517-528 | DOI | Zbl

[29] Werner, E. On Lp-affine surface areas, Indiana Univ. Math. J., Volume 56 (2007), pp. 2305-2323

[30] Werner, F.; Ye, D. Y. New Lp-affine isoperimetric inequalities, Adv. Math., Volume 218 (2008), pp. 762-780 | DOI

[31] Xi, D. M.; Jin, H. L.; Leng, G. S. The Orlicz Brunn-Minkowski inequality, Adv. Math., Volume 260 (2014), pp. 350-374 | DOI

[32] Yuan, J.; Cheung, W.-S. Lp intersection bodies , J. Math. Anal. Appl., Volume 338 (2008), pp. 1431-1439 | DOI

[33] Yuan, S. F.; Jin, H. L.; Leng, G. S. Orlicz geominimal surface areas , Math. Inequal. Appl., Volume 18 (2015), pp. 353-362

[34] Zhao, C.-J.; Leng, G. S. Brunn-Minkowski inequality for mixed intersection bodies, J. Math. Anal. Appl., Volume 301 (2005), pp. 115-123 | DOI

[35] Zhu, G. X. The Orlicz centroid inequality for star bodies , Adv. in Appl. Math., Volume 48 (2012), pp. 432-445 | Zbl | DOI

[36] Zhu, X. Y.; Leng, G. S. On the Lp intersection body , Appl. Math. Mech., Volume 28 (2007), pp. 1669-1678 | DOI

[37] Zhu, B. C.; Li, N.; Zhou, J. Z. Isoperimetric inequalities for Lp-geominimal surface area, Glasgow Math. J., Volume 53 (2011), pp. 717-726 | DOI

[38] Zhu, B. C.; Zhou, J. Z.; W. X. Xu Lp mixed geominimal surface area, J. Math. Anal. Appl., Volume 422 (2015), pp. 1247-1263 | DOI

Cité par Sources :