A new generalization of Weibull-exponential distribution with application
Journal of nonlinear sciences and its applications, Tome 11 (2018) no. 9, p. 1099-1112.

Voir la notice de l'article provenant de la source International Scientific Research Publications

In this article, we will introduce a new five-parameter continuous model, called the Kumaraswamy Weibull exponential distribution based on Kumaraswamy Weibull-G family [A. S. Hassan, M. Elgarhy, Adv. Appl. Stat., ${\bf 48}$ (2016), 205--239]. The new model contains some new distributions as well as some former distributions. Various mathematical properties of this distribution are studied. General explicit expressions for the quantile function, expansion of distribution and density functions, moments, generating function, incomplete moments, conditional moments, residual life function, reversed residual life function, mean deviation, inequality measures, Rényi and q-entropies, probability weighted moments, and order statistics are obtained. The estimation of the model parameters is discussed using maximum likelihood method. The practical importance of the new distribution is demonstrated through real data sets where we compare it with several lifetime distributions.
DOI : 10.22436/jnsa.011.09.09
Classification : 60E05, 62E10, 62N05
Keywords: Exponential distribution, Kumaraswamy Weibull-G family of distributions, moments, order statistics, maximum likelihood estimation

ZeinEldin, Ramadan A.  1 ; Elgarhy, M.  2

1 Deanship of Scientific Research, Deanship of Scientific Research, Kingdom of Saudi Arabia;Institute of Statistical Studies and Research, Cairo University, Egypt
2 Vice Presidency for Graduate Studies and Scientific Research, University of Jeddah, Jeddah,, Kingdom of Saudi Arabia
@article{JNSA_2018_11_9_a8,
     author = {ZeinEldin, Ramadan A.  and Elgarhy, M. },
     title = {A new generalization of {Weibull-exponential} distribution with application},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {1099-1112},
     publisher = {mathdoc},
     volume = {11},
     number = {9},
     year = {2018},
     doi = {10.22436/jnsa.011.09.09},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.09.09/}
}
TY  - JOUR
AU  - ZeinEldin, Ramadan A. 
AU  - Elgarhy, M. 
TI  - A new generalization of Weibull-exponential distribution with application
JO  - Journal of nonlinear sciences and its applications
PY  - 2018
SP  - 1099
EP  - 1112
VL  - 11
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.09.09/
DO  - 10.22436/jnsa.011.09.09
LA  - en
ID  - JNSA_2018_11_9_a8
ER  - 
%0 Journal Article
%A ZeinEldin, Ramadan A. 
%A Elgarhy, M. 
%T A new generalization of Weibull-exponential distribution with application
%J Journal of nonlinear sciences and its applications
%D 2018
%P 1099-1112
%V 11
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.09.09/
%R 10.22436/jnsa.011.09.09
%G en
%F JNSA_2018_11_9_a8
ZeinEldin, Ramadan A. ; Elgarhy, M. . A new generalization of Weibull-exponential distribution with application. Journal of nonlinear sciences and its applications, Tome 11 (2018) no. 9, p. 1099-1112. doi : 10.22436/jnsa.011.09.09. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.09.09/

[1] Abouelmagd, T. H. M.; Al-mualim, S.; Elgarhy, M.; Afify, A. Z.; Ahmad, M. Properties of the four-parameter weibull distribution and its applications, Pak. J. Stat., Volume 33 (2017), pp. 449-466

[2] Alexander, C.; Cordeiro, G. M.; Ortega, E. M. M.; Sarabia, J. M. Generalized beta generated distributions, Comput. Statist. Data Anal., Volume 56 (2012), pp. 1880-1897 | DOI

[3] Alizadeh, M.; Emadi, M.; Doostparast, M.; Cordeiro, G. M.; Ortega, E. M. M.; Pescim, R. R. A new family of distributions: the Kumaraswamy odd log-logistic, properties and applications, Hacet. J. Math. Stat., Volume 44 (2015), pp. 1491-1512 | DOI | Zbl

[4] Alzaatreh, A.; Lee, C.; Famoye, F. A new method for generating families of continuous distributions, Metron, Volume 71 (2013), pp. 63-79 | DOI | Zbl

[5] Bourguignon, M.; Silva, R. B.; Cordeiro, G. M. The Weibull–G family of probability distributions, J. Data Sci., Volume 12 (2014), pp. 53-68

[6] Cordeiro, G. M.; Castro, M. de A new family of generalized distributions, J. Stat. Comput. Simul., Volume 81 (2011), pp. 883-898 | DOI

[7] Cordeiro, G. M.; Ortega, E. M. M.; Nadarajah, S. The Kumaraswamy Weibull distribution with application to failure data, J. Franklin Inst., Volume 347 (2010), pp. 1399-1429 | DOI | Zbl

[8] David, H. A. Order Statistics, Second edition, John Wiley & Sons, Inc., New York, 1981

[9] Elgarhy, M.; Hassan, A. S.; Rashed, M. Garhy-Generated Family of Distributions with Application, Math. Model. Theory, Volume 6 (2016), pp. 1-15

[10] Elgarhy, M.; Haq, M. A. U.; Kadilar, G. Özel; Nasir, A. A New Exponentiated Extended Family of Distributions with Applications, Gazi University Journal of Science (GUJS), Volume 30 (2017), pp. 101-115

[11] Elgarhy, M.; Shakil, M.; Kibria, B. M. Golam Exponentiated Weibull-exponential distribution with applications, Appl Appl Math., Volume 12 (2017), pp. 710-725 | Zbl

[12] Eugene, N.; Lee, C.; Famoye, F. Beta-normal distribution and its applications, Comm. Statist. Theory Methods, Volume 31 (2002), pp. 497-512 | DOI

[13] Gupta, R. C. On characterization of distributions by conditional expectations, Comm. Statist., Volume 4 (1975), pp. 99-103 | DOI

[14] Hassan, A. S.; Elgarhy, M. Kumaraswamy Weibull-generated family of distributions with applications, Adv. Appl. Stat., Volume 48 (2016), pp. 205-239 | Zbl | DOI

[15] Hassan, A. S.; Elgarhy, M. A New Family of Exponentiated Weibull-Generated Distributions, Int. J. Math. Appl., Volume 4 (2016), pp. 135-148

[16] Hassan, A. S.; Elgarhy, M.; Shakil, M. Type II Half Logistic Family of Distributions with Applications, Pak. J. Stat. Oper. Res., Volume 13 (2017), pp. 245-264

[17] Hassan, A. S.; Hemeda, S. E. The additive Weibull-g family of probability distributions, Int. J. Math. Appl., Volume 4 (2016), pp. 151-164

[18] Hinkley, D. On quick choice of power transformations, J. R. Stat. Soc. Ser. C Appl. Stat., Volume 26 (1977), pp. 67-69 | DOI

[19] Jones, M. C. Families of distributions arising from the distributions of order statistics, Test, Volume 13 (2004), pp. 1-43 | Zbl | DOI

[20] Kleiber, C. On Lorenz Order with in Parametric Families of Income Distributions, Sankhya Ser. B, Volume 61 (1999), pp. 514-517

[21] Kotz, S.; Shanbhag, D. N. Some new approaches to probability distributions, Adv. in Appl. Probab., Volume 12 (1980), pp. 903-921 | DOI

[22] Navarro, J.; Franco, M.; Ruiz, J. M. Characterization through moments of the residual life and conditional spacing, Sankhya Ser. A, Volume 60 (1998), pp. 36-48

[23] Oguntunde, P. E.; Balogun, O. S.; Okagbue, H. I.; Bishop, S. A. The Weibull-Exponential Distribution: Its Properties and Applications, J. Appl. Sci., Volume 15 (2015), pp. 1305-1311

[24] Rényi, A. On measures of entropy and information, 4th Berkeley Sympos. Math. Statist. and Prob. (Univ. California Press, Berkeley), Volume 1 (1961), pp. 547-561 | Zbl

[25] Ristić, M. M.; Balakrishnan, N. The gamma-exponentiated exponential distribution, J. Stat. Comput. Simul., Volume 82 (2012), pp. 1191-1206 | DOI

[26] Zenga, M. Inequality curve and inequality index based on the ratios between lower and upper arithmetic means, Statistica e Applicazioni, Volume 4 (2007), pp. 3-27

[27] Zografos, K.; Balakrishnan, N. On families of beta- and generalized gamma-generated distributions and associated inference, Stat. Methodol., Volume 6 (2009), pp. 344-362 | DOI | Zbl

[28] Zoroa, P.; Ruiz, J. M.; Marín, J. A. characterization based on conditional expectations, Comm. Statist. Theory Methods, Volume 19 (1990), pp. 3127-3135 | DOI

Cité par Sources :