Voir la notice de l'article provenant de la source International Scientific Research Publications
O'Regan, Donal  1
@article{JNSA_2018_11_9_a7, author = {O'Regan, Donal }, title = {Coincidence for morphisms based on compactness principles}, journal = {Journal of nonlinear sciences and its applications}, pages = {1096-1098}, publisher = {mathdoc}, volume = {11}, number = {9}, year = {2018}, doi = {10.22436/jnsa.011.09.08}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.09.08/} }
TY - JOUR AU - O'Regan, Donal TI - Coincidence for morphisms based on compactness principles JO - Journal of nonlinear sciences and its applications PY - 2018 SP - 1096 EP - 1098 VL - 11 IS - 9 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.09.08/ DO - 10.22436/jnsa.011.09.08 LA - en ID - JNSA_2018_11_9_a7 ER -
%0 Journal Article %A O'Regan, Donal %T Coincidence for morphisms based on compactness principles %J Journal of nonlinear sciences and its applications %D 2018 %P 1096-1098 %V 11 %N 9 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.09.08/ %R 10.22436/jnsa.011.09.08 %G en %F JNSA_2018_11_9_a7
O'Regan, Donal . Coincidence for morphisms based on compactness principles. Journal of nonlinear sciences and its applications, Tome 11 (2018) no. 9, p. 1096-1098. doi : 10.22436/jnsa.011.09.08. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.09.08/
[1] Fixed points, morphisms, countably condensing pairs and index theory, Nonlinear Funct. Anal. Appl., Volume 7 (2002), pp. 241-253 | Zbl
[2] The Lefschetz fixed point theorems for multi-valued maps of non–metrizable spaces, Fund. Math., Volume 92 (1976), pp. 213-222
[3] Topological fixed point theory of multivalued mappings, Kluwer Academic Publishers, Dordrecht, 1999 | DOI
[4] Some general theorems in coincidence theory. I, J. Math. Pures Appl., Volume 60 (1981), pp. 361-373 | Zbl
[5] The Lefschetz fixed point theory for morphisms in topological vector spaces, Topol. Methods Nonlinear Anal., Volume 20 (2002), pp. 315-333 | Zbl
[6] Fixed Point Theory, Springer-Verlag, New York, 2003 | DOI
[7] Coincidence theory for compact morphisms, Fixed Point Theory Appl., Volume 2017 (2017), pp. 1-8 | Zbl | DOI
[8] A note on coincidence theory for noncompact morphisms, Nonlinear Anal. Forum (to appear.)
Cité par Sources :