Coincidence for morphisms based on compactness principles
Journal of nonlinear sciences and its applications, Tome 11 (2018) no. 9, p. 1096-1098.

Voir la notice de l'article provenant de la source International Scientific Research Publications

We present some general coincidence results based on coincidence principles for compact morphisms.
DOI : 10.22436/jnsa.011.09.08
Classification : 54H25, 55M20
Keywords: Coincidence, noncompact morphisms

O'Regan, Donal  1

1 School of Mathematics, Statistics and Applied Mathematics, National University of Ireland, Galway, Ireland
@article{JNSA_2018_11_9_a7,
     author = {O'Regan, Donal },
     title = {Coincidence   for morphisms based on compactness principles},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {1096-1098},
     publisher = {mathdoc},
     volume = {11},
     number = {9},
     year = {2018},
     doi = {10.22436/jnsa.011.09.08},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.09.08/}
}
TY  - JOUR
AU  - O'Regan, Donal 
TI  - Coincidence   for morphisms based on compactness principles
JO  - Journal of nonlinear sciences and its applications
PY  - 2018
SP  - 1096
EP  - 1098
VL  - 11
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.09.08/
DO  - 10.22436/jnsa.011.09.08
LA  - en
ID  - JNSA_2018_11_9_a7
ER  - 
%0 Journal Article
%A O'Regan, Donal 
%T Coincidence   for morphisms based on compactness principles
%J Journal of nonlinear sciences and its applications
%D 2018
%P 1096-1098
%V 11
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.09.08/
%R 10.22436/jnsa.011.09.08
%G en
%F JNSA_2018_11_9_a7
O'Regan, Donal . Coincidence   for morphisms based on compactness principles. Journal of nonlinear sciences and its applications, Tome 11 (2018) no. 9, p. 1096-1098. doi : 10.22436/jnsa.011.09.08. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.09.08/

[1] Agarwal, R. P.; O’Regan, D. Fixed points, morphisms, countably condensing pairs and index theory, Nonlinear Funct. Anal. Appl., Volume 7 (2002), pp. 241-253 | Zbl

[2] Fournier, G.; Gorniewicz, L. The Lefschetz fixed point theorems for multi-valued maps of non–metrizable spaces, Fund. Math., Volume 92 (1976), pp. 213-222

[3] Gorniewicz, L. Topological fixed point theory of multivalued mappings, Kluwer Academic Publishers, Dordrecht, 1999 | DOI

[4] Gorniewicz, L.; Granas, A. Some general theorems in coincidence theory. I, J. Math. Pures Appl., Volume 60 (1981), pp. 361-373 | Zbl

[5] Gorniewicz, L.; Rozploch-Nowakowska, D. The Lefschetz fixed point theory for morphisms in topological vector spaces, Topol. Methods Nonlinear Anal., Volume 20 (2002), pp. 315-333 | Zbl

[6] Granas, A.; Dugundji, J. Fixed Point Theory, Springer-Verlag, New York, 2003 | DOI

[7] O’Regan, D. Coincidence theory for compact morphisms, Fixed Point Theory Appl., Volume 2017 (2017), pp. 1-8 | Zbl | DOI

[8] O’Regan, D. A note on coincidence theory for noncompact morphisms, Nonlinear Anal. Forum (to appear.)

Cité par Sources :