Strong and weak convergence of Mann iteration of monotone $\alpha$-nonexpansive mappings in uniformly convex Banach spaces
Journal of nonlinear sciences and its applications, Tome 11 (2018) no. 9, p. 1085-1095.

Voir la notice de l'article provenant de la source International Scientific Research Publications

In this paper, the demiclosed principle of monotone $\alpha$-nonexpansive mapping is showed in a uniformly convex Banach space with the partial order ``$\leq$". With the help of such a demiclosed principle, the strong convergence of Mann iteration of monotone $\alpha$-nonexpansive mapping $T$ are proved without some compact conditions such as semi-compactness of $T$, and the weakly convergent conclusions of such an iteration are studied without the conditions such as Opial's condition. These convergent theorems are obtained under the iterative coefficient satisfying the condition,
$\sum\limits_{k=1}^{+\infty}\min\{\alpha_k,(1-\alpha_k)\}=+\infty,$
which contains $\alpha_k=\frac1{k+1}$ as a special case
DOI : 10.22436/jnsa.011.09.07
Classification : 47H06, 47J05, 47J25, 47H10, 47H17, 49J40, 65J15
Keywords: Ordered Banach space, fixed point, monotone \(\alpha\)-nonexpansive mapping, strong convergence

Zheng, Yuchun 1 ; Wang, Lin  2

1 College of Statistics and Mathematics, Yunnan University of Finance and Economics, Longquan Road, Kunming, 650221, P. R. China;School of Mathematics and Information Science, Henan Normal University, XinXiang HeNan, 453007, P. R. China
2 College of Statistics and Mathematics, Yunnan University of Finance and Economics, Longquan Road, Kunming, 650221, P. R. China
@article{JNSA_2018_11_9_a6,
     author = { Zheng, Yuchun and Wang, Lin },
     title = {Strong and weak convergence of {Mann} iteration of monotone \(\alpha\)-nonexpansive mappings  in uniformly convex  {Banach} spaces},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {1085-1095},
     publisher = {mathdoc},
     volume = {11},
     number = {9},
     year = {2018},
     doi = {10.22436/jnsa.011.09.07},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.09.07/}
}
TY  - JOUR
AU  -  Zheng, Yuchun
AU  - Wang, Lin 
TI  - Strong and weak convergence of Mann iteration of monotone \(\alpha\)-nonexpansive mappings  in uniformly convex  Banach spaces
JO  - Journal of nonlinear sciences and its applications
PY  - 2018
SP  - 1085
EP  - 1095
VL  - 11
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.09.07/
DO  - 10.22436/jnsa.011.09.07
LA  - en
ID  - JNSA_2018_11_9_a6
ER  - 
%0 Journal Article
%A  Zheng, Yuchun
%A Wang, Lin 
%T Strong and weak convergence of Mann iteration of monotone \(\alpha\)-nonexpansive mappings  in uniformly convex  Banach spaces
%J Journal of nonlinear sciences and its applications
%D 2018
%P 1085-1095
%V 11
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.09.07/
%R 10.22436/jnsa.011.09.07
%G en
%F JNSA_2018_11_9_a6
 Zheng, Yuchun; Wang, Lin . Strong and weak convergence of Mann iteration of monotone \(\alpha\)-nonexpansive mappings  in uniformly convex  Banach spaces. Journal of nonlinear sciences and its applications, Tome 11 (2018) no. 9, p. 1085-1095. doi : 10.22436/jnsa.011.09.07. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.09.07/

[1] Agarwal, R. P.; O’Regan, D.; Sahu, D. R. Fixed point theory for Lipschitzian-type mappings with applications, Springer, New York, 2009 | DOI | Zbl

[2] Bachar, M.; Khamsi, M. A On common approximate fixed points of monotone nonexpansive semigroups in Banach spaces, Fixed Point Theory Appl., Volume 2015 (2015), pp. 1-11 | Zbl | DOI

[3] Berinde, V. A convergence theorem for Mann iteration in the class of Zamfirescu operators, An. Univ. Vest Timi. Ser. Mat.-Inform., Volume 45 (2007), pp. 33-41 | Zbl

[4] Dehaish, B. A. B.; Khamsi, M. A. Mann iteration process for monotone nonexpansive mappings, Fixed Point Theory Appl., Volume 2015 (2015), pp. 1-7 | Zbl | DOI

[5] Deimling, K. Nonlinear Functional Analysis, Dover Publications Inc., New York, 2010

[6] George, A. B.; Nse, C. A. A Monotonicity Condition for Strong Convergence of the Mann Iterative Sequence for Demicontractive Maps in Hilbert Spaces, Appl. Math., Volume 5 (2014), pp. 2195-2198

[7] George, S.; Shaini, P. Convergence theorems for the class of Zamfirescu operators, Int. Math. Forum, Volume 7 (2012), pp. 1785-1792

[8] Goebel, K.; Kirk, W. A. Topics in metric fixed point theory, Cambridge University Press, Cambridge, 1990 | DOI

[9] Gu, F.; Lu, J. Stability of Mann and Ishikawa iterative processes with errors for a class of nonlinear variational inclusions problem, Math. Commun., Volume 9 (2004), pp. 149-159 | Zbl

[10] Jung, J. S. Iterative approaches to common fixed points of nonexpansive mappings in Banach spaces, J. Math. Anal. Appl., Volume 302 (2005), pp. 509-520 | DOI | Zbl

[11] Kim, J. K.; Liu, Z.; Nam, Y. M.; Chun, S. A. Strong convergence theorems and stability problems of Mann and Ishikawa iterative sequences for strictly hemi-contractive mappings, J. Nonlinear Convex Anal., Volume 5 (2004), pp. 285-294 | Zbl

[12] Kirk, W. A.; Sims, B. Handbook of metric fixed point theory, Kluwer Academic Publishers, Dordrecht, 2001 | DOI

[13] Kohsaka, F.; Takahashi, W. Existence and approximation of fixed points of firmly nonexpansive-type mappings in Banach spaces, SIAM J. Optim., Volume 19 (2008), pp. 824-835 | DOI

[14] Lin, L.-J.; Wang, S.-Y. Fixed point theorems for (a, b)-monotone mapping mapping in Hilbert spaces, Fixed Point Theory Appl., Volume 2012 (2012), pp. 1-14

[15] Liu, L. S. Ishikawa and Mann iteration process with errors for nonlinear strongly accretive mappings in Banach spaces, J. Math. Anal. Appl., Volume 194 (1995), pp. 114-125

[16] Mann, W. R. Mean value methods in iteration, Proc. Amer. Math. Soc., Volume 4 (1953), pp. 506-510 | DOI

[17] Naraghirad, E.; Wong, N.-C.; Yao, J.-C. Approximating fixed points of \(\alpha\)-nonexpansive mappings in uniformly convex Banach spaces and CAT(0) spaces, Fixed Point Theory Appl., Volume 2013 (2013), pp. 1-20 | DOI | Zbl

[18] Okeke, G. A.; Kim, J. K. Convergence and summable almost T-stability of the random Picard-Mann hybrid iterative process, J. Inequal. Appl., Volume 2015 (2015), pp. 1-14 | DOI | Zbl

[19] Opial, Z. Weak convergence of the sequence of successive approximations for nonexpansive mappings in Banach spaces, Bull. Amer. Math. Soc., Volume 73 (1967), pp. 591-597

[20] Pazy, A. Asymptotic behavior of contractions in Hilbert spaces, Israel J. Math., Volume 9 (1971), pp. 335-340 | DOI

[21] Song, Y. S.; Chen, R. D. Pazy’s fixed point theorem with respect to the partial order in uniformly convex Banach spaces, preprint arXiv (2016), pp. 1-17

[22] Song, Y. S.; Chen, R. D. Weak and strong convergence of Mann’s-type iterations for a countable family of nonexpansive mappings, J. Korean Math. Soc., Volume 45 (2008), pp. 1393-1404 | Zbl | DOI

[23] Song, Y. S.; Kumam, P.; Cho, Y. J. Fixed point theorems and iterative approximations for monotone nonexpansive mappings in ordered Banach spaces, Fixed Point Theory Appl., Volume 2016 (2016), pp. 1-11 | DOI | Zbl

[24] Song, Y. S.; Promluang, K.; Kumam, P.; Cho, Y. J. Some convergence theorems of the Mann iteration for monotone \(\alpha\)- nonexpansive mappings, Appl. Math. Comput., Volume 287/288 (2016), pp. 74-82 | DOI

[25] Song, Y. S.; Wang, H. J. Strong convergence for the modified Mann’s iteration of \(\lambda\)-strict pseudocontraction, Appl. Math. Comput., Volume 237 (2014), pp. 405-410 | DOI | Zbl

[26] Sun, J. Nonlinear Functional Analysis and Its Application, Science Publishing House, Beijing, 2008

[27] Suzuki, T. Strong convergence of Krasnoselskii and Mann’s sequences for one-parameter nonexpansive semigroups without Bochner integrals, J. Math. Anal. Appl., Volume 305 (2005), pp. 227-239 | DOI | Zbl

[28] Takahashi, W. Fixed point theorems for new nonlinear mappings in a Hilbert space, J. Nonlinear Convex Anal., Volume 11 (2010), pp. 79-88

[29] Takahashi, W. Nonlinear Functional Analysis–Fixed Point Theory and its Applications, Yokohama Publishers inc, Yokohama, 2000

[30] Takahashi, W.; Yao, J. C. Fixed point theorems and ergodic theorems for nonlinear mappings in a Hilbert space, Taiwan. J. Math., Volume 15 (2011), pp. 457-472 | Zbl | DOI

[31] Zhang, H.; Su, Y. Convergence theorems for strict pseudo-contractions in q-uniformly smooth Banach spaces, Nonlinear Anal., Volume 71 (2009), pp. 4572-4580 | DOI

[32] Zhou, H. Y. Convergence theorems for \(\lambda\)-strict pseudo-contractions in 2-uniformly smooth Banach spaces, Nonlinear Anal., Volume 69 (2008), pp. 3160-3173 | DOI | Zbl

[33] Zhou, H. Y.; Zhang, M. H.; Zhou, H. Y. A convergence theorem on Mann iteration for strictly pseudo-contraction mappings in Hilbert spaces (Chinese), J. Hebei Univ. Nat. Sci., Volume 26 (2006), pp. 348-349

Cité par Sources :