Voir la notice de l'article provenant de la source International Scientific Research Publications
$\sum\limits_{k=1}^{+\infty}\min\{\alpha_k,(1-\alpha_k)\}=+\infty,$ |
Zheng, Yuchun 1 ; Wang, Lin  2
@article{JNSA_2018_11_9_a6, author = { Zheng, Yuchun and Wang, Lin }, title = {Strong and weak convergence of {Mann} iteration of monotone \(\alpha\)-nonexpansive mappings in uniformly convex {Banach} spaces}, journal = {Journal of nonlinear sciences and its applications}, pages = {1085-1095}, publisher = {mathdoc}, volume = {11}, number = {9}, year = {2018}, doi = {10.22436/jnsa.011.09.07}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.09.07/} }
TY - JOUR AU - Zheng, Yuchun AU - Wang, Lin TI - Strong and weak convergence of Mann iteration of monotone \(\alpha\)-nonexpansive mappings in uniformly convex Banach spaces JO - Journal of nonlinear sciences and its applications PY - 2018 SP - 1085 EP - 1095 VL - 11 IS - 9 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.09.07/ DO - 10.22436/jnsa.011.09.07 LA - en ID - JNSA_2018_11_9_a6 ER -
%0 Journal Article %A Zheng, Yuchun %A Wang, Lin %T Strong and weak convergence of Mann iteration of monotone \(\alpha\)-nonexpansive mappings in uniformly convex Banach spaces %J Journal of nonlinear sciences and its applications %D 2018 %P 1085-1095 %V 11 %N 9 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.09.07/ %R 10.22436/jnsa.011.09.07 %G en %F JNSA_2018_11_9_a6
Zheng, Yuchun; Wang, Lin . Strong and weak convergence of Mann iteration of monotone \(\alpha\)-nonexpansive mappings in uniformly convex Banach spaces. Journal of nonlinear sciences and its applications, Tome 11 (2018) no. 9, p. 1085-1095. doi : 10.22436/jnsa.011.09.07. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.09.07/
[1] Fixed point theory for Lipschitzian-type mappings with applications, Springer, New York, 2009 | DOI | Zbl
[2] On common approximate fixed points of monotone nonexpansive semigroups in Banach spaces, Fixed Point Theory Appl., Volume 2015 (2015), pp. 1-11 | Zbl | DOI
[3] A convergence theorem for Mann iteration in the class of Zamfirescu operators, An. Univ. Vest Timi. Ser. Mat.-Inform., Volume 45 (2007), pp. 33-41 | Zbl
[4] Mann iteration process for monotone nonexpansive mappings, Fixed Point Theory Appl., Volume 2015 (2015), pp. 1-7 | Zbl | DOI
[5] Nonlinear Functional Analysis, Dover Publications Inc., New York, 2010
[6] A Monotonicity Condition for Strong Convergence of the Mann Iterative Sequence for Demicontractive Maps in Hilbert Spaces, Appl. Math., Volume 5 (2014), pp. 2195-2198
[7] Convergence theorems for the class of Zamfirescu operators, Int. Math. Forum, Volume 7 (2012), pp. 1785-1792
[8] Topics in metric fixed point theory, Cambridge University Press, Cambridge, 1990 | DOI
[9] Stability of Mann and Ishikawa iterative processes with errors for a class of nonlinear variational inclusions problem, Math. Commun., Volume 9 (2004), pp. 149-159 | Zbl
[10] Iterative approaches to common fixed points of nonexpansive mappings in Banach spaces, J. Math. Anal. Appl., Volume 302 (2005), pp. 509-520 | DOI | Zbl
[11] Strong convergence theorems and stability problems of Mann and Ishikawa iterative sequences for strictly hemi-contractive mappings, J. Nonlinear Convex Anal., Volume 5 (2004), pp. 285-294 | Zbl
[12] Handbook of metric fixed point theory, Kluwer Academic Publishers, Dordrecht, 2001 | DOI
[13] Existence and approximation of fixed points of firmly nonexpansive-type mappings in Banach spaces, SIAM J. Optim., Volume 19 (2008), pp. 824-835 | DOI
[14] Fixed point theorems for (a, b)-monotone mapping mapping in Hilbert spaces, Fixed Point Theory Appl., Volume 2012 (2012), pp. 1-14
[15] Ishikawa and Mann iteration process with errors for nonlinear strongly accretive mappings in Banach spaces, J. Math. Anal. Appl., Volume 194 (1995), pp. 114-125
[16] Mean value methods in iteration, Proc. Amer. Math. Soc., Volume 4 (1953), pp. 506-510 | DOI
[17] Approximating fixed points of \(\alpha\)-nonexpansive mappings in uniformly convex Banach spaces and CAT(0) spaces, Fixed Point Theory Appl., Volume 2013 (2013), pp. 1-20 | DOI | Zbl
[18] Convergence and summable almost T-stability of the random Picard-Mann hybrid iterative process, J. Inequal. Appl., Volume 2015 (2015), pp. 1-14 | DOI | Zbl
[19] Weak convergence of the sequence of successive approximations for nonexpansive mappings in Banach spaces, Bull. Amer. Math. Soc., Volume 73 (1967), pp. 591-597
[20] Asymptotic behavior of contractions in Hilbert spaces, Israel J. Math., Volume 9 (1971), pp. 335-340 | DOI
[21] Pazy’s fixed point theorem with respect to the partial order in uniformly convex Banach spaces, preprint arXiv (2016), pp. 1-17
[22] Weak and strong convergence of Mann’s-type iterations for a countable family of nonexpansive mappings, J. Korean Math. Soc., Volume 45 (2008), pp. 1393-1404 | Zbl | DOI
[23] Fixed point theorems and iterative approximations for monotone nonexpansive mappings in ordered Banach spaces, Fixed Point Theory Appl., Volume 2016 (2016), pp. 1-11 | DOI | Zbl
[24] Some convergence theorems of the Mann iteration for monotone \(\alpha\)- nonexpansive mappings, Appl. Math. Comput., Volume 287/288 (2016), pp. 74-82 | DOI
[25] Strong convergence for the modified Mann’s iteration of \(\lambda\)-strict pseudocontraction, Appl. Math. Comput., Volume 237 (2014), pp. 405-410 | DOI | Zbl
[26] Nonlinear Functional Analysis and Its Application, Science Publishing House, Beijing, 2008
[27] Strong convergence of Krasnoselskii and Mann’s sequences for one-parameter nonexpansive semigroups without Bochner integrals, J. Math. Anal. Appl., Volume 305 (2005), pp. 227-239 | DOI | Zbl
[28] Fixed point theorems for new nonlinear mappings in a Hilbert space, J. Nonlinear Convex Anal., Volume 11 (2010), pp. 79-88
[29] Nonlinear Functional Analysis–Fixed Point Theory and its Applications, Yokohama Publishers inc, Yokohama, 2000
[30] Fixed point theorems and ergodic theorems for nonlinear mappings in a Hilbert space, Taiwan. J. Math., Volume 15 (2011), pp. 457-472 | Zbl | DOI
[31] Convergence theorems for strict pseudo-contractions in q-uniformly smooth Banach spaces, Nonlinear Anal., Volume 71 (2009), pp. 4572-4580 | DOI
[32] Convergence theorems for \(\lambda\)-strict pseudo-contractions in 2-uniformly smooth Banach spaces, Nonlinear Anal., Volume 69 (2008), pp. 3160-3173 | DOI | Zbl
[33] A convergence theorem on Mann iteration for strictly pseudo-contraction mappings in Hilbert spaces (Chinese), J. Hebei Univ. Nat. Sci., Volume 26 (2006), pp. 348-349
Cité par Sources :