Relative strongly harmonic convex functions and their characterizations
Journal of nonlinear sciences and its applications, Tome 11 (2018) no. 9, p. 1070-1076.

Voir la notice de l'article provenant de la source International Scientific Research Publications

In this paper, we introduce a new class of harmonic convex functions with respect to an arbitrary non-negative function, which is called the strongly general harmonic convex function. We discuss some characterizations of strongly general harmonic convex functions. Relationship with other classes of convex functions are also discussed. Some special cases are discussed as applications of the main results. The ideas and techniques of this paper may be starting point for further research.
DOI : 10.22436/jnsa.011.09.05
Classification : 26D15, 26A51, 90C23
Keywords: Harmonic convex function, strongly harmonic convex function, strongly general convex functions

Bin-Mohsin, Bandar  1 ; Aslam Noor, Muhammad  2 ; Noor, Khalida Inayat  3 ; Iftikhar, Sabah 3

1 Department of Mathematics, King Saud University, Riyadh, Saudi Arabia
2 Department of Mathematics, King Saud University, Riyadh, Saudi Arabia;Department of Mathematics, COMSATS Institute of Information Technology, Park Road,, Islamabad, Pakistan
3 Department of Mathematics, COMSATS Institute of Information Technology, Park Road, Islamabad, Pakistan
@article{JNSA_2018_11_9_a4,
     author = {Bin-Mohsin, Bandar  and Aslam Noor, Muhammad  and Noor, Khalida Inayat  and  Iftikhar, Sabah},
     title = {Relative strongly harmonic convex functions and their characterizations},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {1070-1076},
     publisher = {mathdoc},
     volume = {11},
     number = {9},
     year = {2018},
     doi = {10.22436/jnsa.011.09.05},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.09.05/}
}
TY  - JOUR
AU  - Bin-Mohsin, Bandar 
AU  - Aslam Noor, Muhammad 
AU  - Noor, Khalida Inayat 
AU  -  Iftikhar, Sabah
TI  - Relative strongly harmonic convex functions and their characterizations
JO  - Journal of nonlinear sciences and its applications
PY  - 2018
SP  - 1070
EP  - 1076
VL  - 11
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.09.05/
DO  - 10.22436/jnsa.011.09.05
LA  - en
ID  - JNSA_2018_11_9_a4
ER  - 
%0 Journal Article
%A Bin-Mohsin, Bandar 
%A Aslam Noor, Muhammad 
%A Noor, Khalida Inayat 
%A  Iftikhar, Sabah
%T Relative strongly harmonic convex functions and their characterizations
%J Journal of nonlinear sciences and its applications
%D 2018
%P 1070-1076
%V 11
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.09.05/
%R 10.22436/jnsa.011.09.05
%G en
%F JNSA_2018_11_9_a4
Bin-Mohsin, Bandar ; Aslam Noor, Muhammad ; Noor, Khalida Inayat ;  Iftikhar, Sabah. Relative strongly harmonic convex functions and their characterizations. Journal of nonlinear sciences and its applications, Tome 11 (2018) no. 9, p. 1070-1076. doi : 10.22436/jnsa.011.09.05. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.09.05/

[1] Adamek, M. On a problem connected with strongly convex functions, Math. Inequ. Appl., Volume 19 (2016), pp. 1287-1293 | Zbl

[2] Anderson, G. D.; Vamanamurthy, M. K.; Vuorinen, M. Generalized convexity and inequalities, J. Math. Anal. Appl., Volume 335 (2007), pp. 1294-1308 | DOI

[3] Angulo, H.; Gimenez, J.; Moros, A. M.; Nikodem, K. On strongly h-convex functions, Ann. Funct. Anal., Volume 2 (2011), pp. 85-91 | Zbl | DOI

[4] Azcar, A.; Gimnez, J.; Nikodem, K.; Snchez, J. L. On strongly midconvex functions, Opuscula Math., Volume 31 (2011), pp. 15-26 | DOI

[5] Azócar, A.; Nikodem, K.; Roa, G. Fejer type inequalities for strongly convex functions, Annal. Math. Siles., Volume 26 (2012), pp. 43-54 | Zbl

[6] Cristescu, G.; Lupsa, L. Non-connected Convexities and Applications, Kluwer Academic Publisher, Dordrechet, 2002 | DOI | Zbl

[7] Gen, R.; Nikodem, K. Strongly convex functions of higher order, Nonlinear Anal., Volume 74 (2011), pp. 661-665 | DOI

[8] Hadamard, J. Etude sur les proprietes des fonctions entieres e.t en particulier dune fonction consideree par Riemann, J. Math. Pure Appl., Volume 58 (1893), pp. 171-215 | EuDML

[9] Hermite, C. Sur deux limites d’une intégrale définie, Mathesis, , 1883

[10] Iscan, I. Hermite-Hadamard type inequalities for harmonically convex functions, Hacett, J. Math. Stats., Volume 43 (2014), pp. 935-942

[11] Jovanovic, M. V. A note on strongly convex and strongly quasiconvex functions, Math. Notes, Volume 60 (1996), pp. 778-779 | DOI

[12] Lara, T.; Merentes, N.; Nikodem, K. Strong h-convexity and separation theorems, Int. J. Anal., Volume 2016 (2016), pp. 1-5 | Zbl

[13] Merentes, N.; Nikodem, K. Remarks on strongly convex functions, Aequationes Math., Volume 80 (2010), pp. 193-199 | DOI

[14] Nikodem, K. Strongly convex functions and related classes of functions, Handbook of functional equations, Volume 2014 (2014), pp. 365-405 | DOI

[15] Nikodem, K.; Pales, Z. Characterizations of inner product spaces by strongly convex functions, Banach J. Math. Anal., Volume 5 (2011), pp. 83-87 | DOI | Zbl

[16] Noor, M. A. New approximation schemes for general variational inequalities, J. Math. Anal. Appl., Volume 251 (2000), pp. 217-229 | DOI

[17] Noor, M. A. Some development in general variational inequalities, Appl. Math. Comput., Volume 152 (2004), pp. 199-277 | DOI

[18] Noor, M. A.; Cristescu, G.; Awan, M. U. Bounds having Riemann type quantum integrals via strongly convex functions, Studia Sci. Math. Hungar., Volume 54 (2017), pp. 221-240 | Zbl | DOI

[19] Noor, M. A.; Noor, K. I. Harmonic variational inequalities, Appl. Math. Inf. Sci., Volume 10 (2016), pp. 1811-1814

[20] Noor, M. A.; Noor, K. I. Some Implicit Methods for Solving Harmonic Variational Inequalities, Inter. J. Anal. Appl., Volume 12 (2016), pp. 10-14 | Zbl

[21] Noor, M. A.; Noor, K. I.; Iftikhar, S. Hermite-Hadamard inequalities for strongly harmonic convex functions, J. Inequal. Spec. Funct., Volume 7 (2016), pp. 99-113

[22] Noor, M. A.; Noor, K. I.; Iftikhar, S. Inequalities via strongly p-harmonic log-convex functions, J. Nonl. Funct. Anal., Volume 2017 (2017), pp. 1-14

[23] Noor, M. A.; Noor, K. I.; Iftikhar, S. Integral inequalities for differentiable relative harmonic preinvex functions (survey), TWMS J. Pure Appl. Math., Volume 7 (2016), pp. 3-19

[24] Noor, M. A.; Noor, K. I.; Iftikhar, S.; Awan, M. U. Strongly generalized harmonic convex functions and integral inequalities, J. Math. Anal., Volume 7 (2016), pp. 66-77 | Zbl

[25] Pecaric, J.; Proschan, F.; Tong, Y. L. Convex Functions, Partial Orderings, and Statistical Applications, Acdemic Press, Boston, 1992

[26] Polyak, B. T. Existence theorems and convergence of minimizing sequences in extremum problems with restrictions, Soviet Math. Dokl., Volume 7 (1966), pp. 72-75 | Zbl

Cité par Sources :