Voir la notice de l'article provenant de la source International Scientific Research Publications
Mongkolkeha, Chirasak  1 ; Sintunavarat, Wutiphol  2
@article{JNSA_2018_11_9_a3, author = {Mongkolkeha, Chirasak and Sintunavarat, Wutiphol }, title = {Some new cyclic admissibility type with uni-dimensional and multidimensional fixed point theorems and its applications}, journal = {Journal of nonlinear sciences and its applications}, pages = {1056-1069}, publisher = {mathdoc}, volume = {11}, number = {9}, year = {2018}, doi = {10.22436/jnsa.011.09.04}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.09.04/} }
TY - JOUR AU - Mongkolkeha, Chirasak AU - Sintunavarat, Wutiphol TI - Some new cyclic admissibility type with uni-dimensional and multidimensional fixed point theorems and its applications JO - Journal of nonlinear sciences and its applications PY - 2018 SP - 1056 EP - 1069 VL - 11 IS - 9 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.09.04/ DO - 10.22436/jnsa.011.09.04 LA - en ID - JNSA_2018_11_9_a3 ER -
%0 Journal Article %A Mongkolkeha, Chirasak %A Sintunavarat, Wutiphol %T Some new cyclic admissibility type with uni-dimensional and multidimensional fixed point theorems and its applications %J Journal of nonlinear sciences and its applications %D 2018 %P 1056-1069 %V 11 %N 9 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.09.04/ %R 10.22436/jnsa.011.09.04 %G en %F JNSA_2018_11_9_a3
Mongkolkeha, Chirasak ; Sintunavarat, Wutiphol . Some new cyclic admissibility type with uni-dimensional and multidimensional fixed point theorems and its applications. Journal of nonlinear sciences and its applications, Tome 11 (2018) no. 9, p. 1056-1069. doi : 10.22436/jnsa.011.09.04. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.09.04/
[1] Common fixed point theorem for four mappings satisfying generalized weak contractive condition, Filomat, Volume 24 (2010), pp. 1-10 | Zbl | DOI
[2] Common fixed point of generalized weak contractive mappings in partially ordered b-metric spaces, Math. Slovaca, Volume 64 (2014), pp. 941-960 | Zbl | DOI
[3] Principle of weakly contractive maps in Hilbert spaces, in: New Results in Operator Theory and its Applications, Theory Adv. Appl., Volume 98 (1997), pp. 7-22 | DOI
[4] Some Fixed Point Results for (\(\alpha,\beta)-(\psi,\phi\))-Contractive Mappings, Filomat, Volume 28 (2014), pp. 635-647 | DOI
[5] A proof of the generalized Banach contraction conjecture, Proc. Amer. Math. Soc., Volume 131 (2003), pp. 3647-3656 | Zbl | DOI
[6] Sur les opérations dans les ensembles abstraits et leurs applications aux équations intégrales, Fund. Math., Volume 3 (1922), pp. 133-181 | EuDML
[7] Approximating fixed points of weak contractions using the Picard iteration, Nonlinear Anal. Forum, Volume 9 (2004), pp. 43-53 | Zbl
[8] Multivalued fractals in b-metric spaces, Cent. Eur. J. Math., Volume 8 (2010), pp. 367-377 | Zbl
[9] A generalization of Banach principle, Proc. Amer. Math. Soc., Volume 45 (1947), pp. 267-273
[10] Contraction mappings in b-metric spaces, Acta Math. Inform. Univ. Ostraviensis, Volume 1 (1993), pp. 5-11
[11] Common fixed point for generalized ( \(\psi,\phi\))-weak contractions, Appl. Math. Lett., Volume 22 (2009), pp. 1896-1900 | DOI
[12] A generalisation of contraction principle in metric spaces, Fixed Point Theory Appl., Volume 2008 (2008), pp. 1-8 | DOI | Zbl
[13] On contractive mappings, Proc. Amer. Math. Soc., Volume 40 (1973), pp. 604-608 | DOI
[14] Fixed points theorems by altering distances between the points, Bull. Aust. Math. Soc., Volume 30 (1984), pp. 1-9 | DOI
[15] A comparison of various definitions of contractive mappings, Trans. Amer. Math. Soc., Volume 226 (1977), p. 257-90 | Zbl | DOI
[16] Some theorems on weakly contractive maps, Nonlinear Anal., Volume 47 (2001), pp. 2683-2693 | DOI
[17] Multidimensional fixed point theorems in partially ordered complete metric spaces, J. Math. Anal. Appl., Volume 396 (2012), pp. 536-545
[18] Fixed point theorems for \(\alpha-\psi\)-contractive type mappings, Nonlinear Anal., Volume 4 (2012), pp. 2154-2165 | DOI
[19] Nonlinear integral equations with new admissibility types in b-metric spaces, J. Fixed Point Theory Appl., Volume 18 (2016), pp. 397-416 | Zbl | DOI
Cité par Sources :