Some new cyclic admissibility type with uni-dimensional and multidimensional fixed point theorems and its applications
Journal of nonlinear sciences and its applications, Tome 11 (2018) no. 9, p. 1056-1069.

Voir la notice de l'article provenant de la source International Scientific Research Publications

In this paper, we introduce the concept of a cyclic $(\alpha,\beta)$-admissible mapping type $S$ and the notion of an $(\alpha,\beta)$-$(\psi,\varphi)$-contraction type $S$. We also establish fixed point results for such contractions along with the cyclic $(\alpha,\beta)$-admissibility type $S$ in complete $b$-metric spaces and provide some examples for supporting our result. Applying our new results, we obtain fixed point results for cyclic mappings and multidimensional fixed point results. As application, the existence of a solution of the nonlinear integral equation is discussed.
DOI : 10.22436/jnsa.011.09.04
Classification : 47H09, 47H10, 54H25
Keywords: \(\alpha\)-admissible mappings, cyclic \((\alpha,\beta)\)-admissible mappings, generalized weak contraction mappings, multidimensional fixed points, nonlinear integral equations

Mongkolkeha, Chirasak  1 ; Sintunavarat, Wutiphol  2

1 Department of Mathematics, Statistics and Computer Sciences, Faculty of Liberal Arts and Science, Kasetsart University, Kamphaeng-Saen Campus, Nakhonpathom 73140, Thailand
2 Department of Mathematics and Statistics, Faculty of Science and Technology, Thammasat University Rangsit Center, Pathumthani 12121, Thailand
@article{JNSA_2018_11_9_a3,
     author = {Mongkolkeha, Chirasak  and Sintunavarat, Wutiphol },
     title = {Some new cyclic admissibility type with uni-dimensional and multidimensional  fixed point theorems and its applications},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {1056-1069},
     publisher = {mathdoc},
     volume = {11},
     number = {9},
     year = {2018},
     doi = {10.22436/jnsa.011.09.04},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.09.04/}
}
TY  - JOUR
AU  - Mongkolkeha, Chirasak 
AU  - Sintunavarat, Wutiphol 
TI  - Some new cyclic admissibility type with uni-dimensional and multidimensional  fixed point theorems and its applications
JO  - Journal of nonlinear sciences and its applications
PY  - 2018
SP  - 1056
EP  - 1069
VL  - 11
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.09.04/
DO  - 10.22436/jnsa.011.09.04
LA  - en
ID  - JNSA_2018_11_9_a3
ER  - 
%0 Journal Article
%A Mongkolkeha, Chirasak 
%A Sintunavarat, Wutiphol 
%T Some new cyclic admissibility type with uni-dimensional and multidimensional  fixed point theorems and its applications
%J Journal of nonlinear sciences and its applications
%D 2018
%P 1056-1069
%V 11
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.09.04/
%R 10.22436/jnsa.011.09.04
%G en
%F JNSA_2018_11_9_a3
Mongkolkeha, Chirasak ; Sintunavarat, Wutiphol . Some new cyclic admissibility type with uni-dimensional and multidimensional  fixed point theorems and its applications. Journal of nonlinear sciences and its applications, Tome 11 (2018) no. 9, p. 1056-1069. doi : 10.22436/jnsa.011.09.04. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.09.04/

[1] Abbas, M.; Dorić, D. Common fixed point theorem for four mappings satisfying generalized weak contractive condition, Filomat, Volume 24 (2010), pp. 1-10 | Zbl | DOI

[2] Aghajani, A.; Abbas, M.; Roshan, J. R. Common fixed point of generalized weak contractive mappings in partially ordered b-metric spaces, Math. Slovaca, Volume 64 (2014), pp. 941-960 | Zbl | DOI

[3] Alber, Y. I.; Guerre-Delabriere, S. Principle of weakly contractive maps in Hilbert spaces, in: New Results in Operator Theory and its Applications, Theory Adv. Appl., Volume 98 (1997), pp. 7-22 | DOI

[4] Alizadeh., S.; Moradloub, F.; Salimic, P. Some Fixed Point Results for (\(\alpha,\beta)-(\psi,\phi\))-Contractive Mappings, Filomat, Volume 28 (2014), pp. 635-647 | DOI

[5] Arvanitakis, A. D. A proof of the generalized Banach contraction conjecture, Proc. Amer. Math. Soc., Volume 131 (2003), pp. 3647-3656 | Zbl | DOI

[6] Banach, S. Sur les opérations dans les ensembles abstraits et leurs applications aux équations intégrales, Fund. Math., Volume 3 (1922), pp. 133-181 | EuDML

[7] Berinde, V. Approximating fixed points of weak contractions using the Picard iteration, Nonlinear Anal. Forum, Volume 9 (2004), pp. 43-53 | Zbl

[8] Boriceanu, M.; Bota, M.; Petrusel, A. Multivalued fractals in b-metric spaces, Cent. Eur. J. Math., Volume 8 (2010), pp. 367-377 | Zbl

[9] Ćirić, L. B. A generalization of Banach principle, Proc. Amer. Math. Soc., Volume 45 (1947), pp. 267-273

[10] Czerwik, S. Contraction mappings in b-metric spaces, Acta Math. Inform. Univ. Ostraviensis, Volume 1 (1993), pp. 5-11

[11] D. D. Dorić Common fixed point for generalized ( \(\psi,\phi\))-weak contractions, Appl. Math. Lett., Volume 22 (2009), pp. 1896-1900 | DOI

[12] Dutta, P. N.; Choudhury, B. S. A generalisation of contraction principle in metric spaces, Fixed Point Theory Appl., Volume 2008 (2008), pp. 1-8 | DOI | Zbl

[13] Geraghty, M. A. On contractive mappings, Proc. Amer. Math. Soc., Volume 40 (1973), pp. 604-608 | DOI

[14] Khan, M. S.; Swaleh, M.; Sessa, S. Fixed points theorems by altering distances between the points, Bull. Aust. Math. Soc., Volume 30 (1984), pp. 1-9 | DOI

[15] Rhoades, B. E. A comparison of various definitions of contractive mappings, Trans. Amer. Math. Soc., Volume 226 (1977), p. 257-90 | Zbl | DOI

[16] Rhoades, B. E. Some theorems on weakly contractive maps, Nonlinear Anal., Volume 47 (2001), pp. 2683-2693 | DOI

[17] Roldán, A.; Martínez-Moreno, J.; Roldán, C. Multidimensional fixed point theorems in partially ordered complete metric spaces, J. Math. Anal. Appl., Volume 396 (2012), pp. 536-545

[18] Samet, B.; Vetro, C.; Vetro, P. Fixed point theorems for \(\alpha-\psi\)-contractive type mappings, Nonlinear Anal., Volume 4 (2012), pp. 2154-2165 | DOI

[19] Sintunavarat, W. Nonlinear integral equations with new admissibility types in b-metric spaces, J. Fixed Point Theory Appl., Volume 18 (2016), pp. 397-416 | Zbl | DOI

Cité par Sources :