Voir la notice de l'article provenant de la source International Scientific Research Publications
Proinov, Petko D.  1
@article{JNSA_2018_11_9_a2, author = {Proinov, Petko D. }, title = {On the local convergence of {Gargantini-Farmer-Loizou} method for simultaneous approximation of multiple polynomial zeros}, journal = {Journal of nonlinear sciences and its applications}, pages = {1045-1055}, publisher = {mathdoc}, volume = {11}, number = {9}, year = {2018}, doi = {10.22436/jnsa.011.09.03}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.09.03/} }
TY - JOUR AU - Proinov, Petko D. TI - On the local convergence of Gargantini-Farmer-Loizou method for simultaneous approximation of multiple polynomial zeros JO - Journal of nonlinear sciences and its applications PY - 2018 SP - 1045 EP - 1055 VL - 11 IS - 9 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.09.03/ DO - 10.22436/jnsa.011.09.03 LA - en ID - JNSA_2018_11_9_a2 ER -
%0 Journal Article %A Proinov, Petko D. %T On the local convergence of Gargantini-Farmer-Loizou method for simultaneous approximation of multiple polynomial zeros %J Journal of nonlinear sciences and its applications %D 2018 %P 1045-1055 %V 11 %N 9 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.09.03/ %R 10.22436/jnsa.011.09.03 %G en %F JNSA_2018_11_9_a2
Proinov, Petko D. . On the local convergence of Gargantini-Farmer-Loizou method for simultaneous approximation of multiple polynomial zeros. Journal of nonlinear sciences and its applications, Tome 11 (2018) no. 9, p. 1045-1055. doi : 10.22436/jnsa.011.09.03. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.09.03/
[1] A modified Newton method for polynomials, Commun. ACM, Volume 10 (1967), pp. 107-108 | DOI
[2] Valued Fields, Springer Monographs in Mathematics, Berlin, 2005 | DOI
[3] An algorithm for the total or partial factorization of a polynomial, Math. Proc. Cambridge Philos. Soc., Volume 82 (1977), pp. 427-437 | Zbl | DOI
[4] Further applications of circular arithmetic: Schröder-like algorithms with error bounds for finding zeros of polynomials, SIAM J. Numer. Anal., Volume 15 (1978), pp. 497-510 | DOI
[5] A generalization of Obreshkoff-Ehrlich method for multiple roots of polynomial equations, C. R. Acad. Bulg. Sci., Volume 49 (1996), pp. 23-34 | Zbl
[6] A generalization of Obreshkoff-Ehrlich method for multiple roots of algebraic, trigonometric and exponential equations, Math. Balkanica, Volume 14 (2000), pp. 17-28 | Zbl
[7] A unified semilocal convergence analysis of a family of iterative algorithms for computing all zeros of a polynomial simultaneously, Numer. Algorithms, Volume 75 (2017), pp. 1193-1204 | DOI | Zbl
[8] Ehrlich’s methods with a raised speed of convergence, Serdica Math. J., Volume 13 (1987), pp. 52-57 | Zbl
[9] Iterative methods for computation of all multiple roots an algebraic polynomial, Ann. Univ. Sofia Fac. Math. Mech., Volume 78 (1984), pp. 178-185 | Zbl
[10] On the convergence order of a modified method for simultaneous finding polynomial zeros, Computing, Volume 30 (1983), pp. 171-178 | DOI
[11] On computational efficiency of the iterative methods for simultaneous approximation of polynomial zeros, ACM Trans. Math. Soft., Volume 12 (1986), pp. 295-306 | DOI
[12] A note on some improvements of the simultaneous method for determination of polynomial zeros, J. Comput. Appl. Math., Volume 9 (1983), pp. 65-69 | DOI
[13] On the convergence order of an accelerated simultaneous method for polynomial complex zeros, Z. Angew. Math. Mech., Volume 66 (1986), pp. 428-429
[14] Some higher-order methods for the simultaneous approximation of multiple polynomial zeros, Comput. Math. Appl. Ser. A, Volume 12 (1986), pp. 951-962 | DOI | Zbl
[15] Multipoint methods for solving nonlinear equations, Elsevier/ Academic Press, Amsterdam, 2013
[16] New general convergence theory for iterative processes and its applications to Newton-Kantorovich type theorems, J. Complexity, Volume 26 (2010), pp. 3-42 | Zbl | DOI
[17] General convergence theorems for iterative processes and applications to the Weierstrass root-finding method, J. Complexity, Volume 33 (2016), pp. 118-144 | DOI | Zbl
[18] A general semilocal convergence theorem for simultaneous methods for polynomial zeros and its applications to Ehrlich’s and Dochev-Byrnev’s methods, Appl. Math. Comput., Volume 284 (2016), pp. 102-114 | DOI
[19] On the local convergence of Ehrlich method for numerical computation of polynomial zeros, Calcolo, Volume 53 (2016), pp. 413-426 | DOI | Zbl
[20] Unified convergence analysis for Picard iteration in n-dimensional vector spaces, Calcolo, Volume 2018 (2018), pp. 1-21 | DOI | Zbl
[21] Convergence of Chebyshev-like method for simultaneous approximation of multiple polynomial zeros, C. R. Acad. Bulg. Sci., Volume 67 (2014), pp. 907-918 | Zbl
[22] On the convergence of high-order Ehrlich-type iterative methods for approximating all zeros of a polynomial simultaneously, J. Inequal. Appl., Volume 2015 (2015), pp. 1-25 | DOI | Zbl
[23] Certain modifications of Newton’s method for the approximate solution of algebraic equations, Serdica Bulg. Math. Publ., Volume 9 (1983), pp. 67-73
[24] Convergence conditions of some methods for the simultaneous computation of polynomial zeros, Calcolo, Volume 35 (1998), pp. 3-15 | DOI
[25] Complexity analysis of a process for simultaneously obtaining all zeros of polynomials, Computing, Volume 43 (1989), pp. 187-197 | Zbl | DOI
Cité par Sources :