On the local convergence of Gargantini-Farmer-Loizou method for simultaneous approximation of multiple polynomial zeros
Journal of nonlinear sciences and its applications, Tome 11 (2018) no. 9, p. 1045-1055.

Voir la notice de l'article provenant de la source International Scientific Research Publications

The paper deals with a well known iterative method for simultaneous computation of all zeros (of known multiplicities) of a polynomial with coefficients in a valued field. This method was independently introduced by Farmer and Loizou [M. R. Farmer, G. Loizou, Math. Proc. Cambridge Philos. Soc., ${\bf 82}$ (1977), 427--437] and Gargantini [I. Gargantini, SIAM J. Numer. Anal., ${\bf 15}$ (1978), 497--510]. If all zeros of the polynomial are simple, the method coincides with the famous Ehrlich's method [L. W. Ehrlich, Commun. ACM, ${\bf 10}$ (1967), 107--108]. We provide two types of local convergence results for the Gargantini-Farmer-Loizou method. The first main result improves the results of [N. V. Kyurkchiev, A. Andreev, V. Popov, Ann. Univ. Sofia Fac. Math. Mech., ${\bf 78}$ (1984), 178--185] and [A. I. Iliev, C. R. Acad. Bulg. Sci., ${\bf 49}$ (1996), 23--26] for this method. Both main results of the paper generalize the results of Proinov [P. D. Proinov, Calcolo, ${\bf 53}$ (2016), 413--426] for Ehrlich's method. The results in the present paper are obtained by applying a new approach for convergence analysis of Picard type iterative methods in finite-dimensional vector spaces.
DOI : 10.22436/jnsa.011.09.03
Classification : 65H05, 47H09, 47H17, 12Y05
Keywords: Iterative methods, simultaneous methods, Ehrlich method, multiple polynomial zeros, Gargantini-Farmer-Loizou method, local convergence, error estimates

Proinov, Petko D.  1

1 Faculty of Mathematics and Informatics, University of Plovdiv Paisii Hilendarski, 24 Tzar Asen, 4000 Plovdiv, Bulgaria
@article{JNSA_2018_11_9_a2,
     author = {Proinov, Petko D. },
     title = {On the local convergence of {Gargantini-Farmer-Loizou} method for simultaneous approximation of multiple polynomial zeros},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {1045-1055},
     publisher = {mathdoc},
     volume = {11},
     number = {9},
     year = {2018},
     doi = {10.22436/jnsa.011.09.03},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.09.03/}
}
TY  - JOUR
AU  - Proinov, Petko D. 
TI  - On the local convergence of Gargantini-Farmer-Loizou method for simultaneous approximation of multiple polynomial zeros
JO  - Journal of nonlinear sciences and its applications
PY  - 2018
SP  - 1045
EP  - 1055
VL  - 11
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.09.03/
DO  - 10.22436/jnsa.011.09.03
LA  - en
ID  - JNSA_2018_11_9_a2
ER  - 
%0 Journal Article
%A Proinov, Petko D. 
%T On the local convergence of Gargantini-Farmer-Loizou method for simultaneous approximation of multiple polynomial zeros
%J Journal of nonlinear sciences and its applications
%D 2018
%P 1045-1055
%V 11
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.09.03/
%R 10.22436/jnsa.011.09.03
%G en
%F JNSA_2018_11_9_a2
Proinov, Petko D. . On the local convergence of Gargantini-Farmer-Loizou method for simultaneous approximation of multiple polynomial zeros. Journal of nonlinear sciences and its applications, Tome 11 (2018) no. 9, p. 1045-1055. doi : 10.22436/jnsa.011.09.03. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.09.03/

[1] Ehrlich, L. W. A modified Newton method for polynomials, Commun. ACM, Volume 10 (1967), pp. 107-108 | DOI

[2] Engler, A. J.; Prestel, A. Valued Fields, Springer Monographs in Mathematics, Berlin, 2005 | DOI

[3] Farmer, M. R.; Loizou, G. An algorithm for the total or partial factorization of a polynomial, Math. Proc. Cambridge Philos. Soc., Volume 82 (1977), pp. 427-437 | Zbl | DOI

[4] Gargantini, I. Further applications of circular arithmetic: Schröder-like algorithms with error bounds for finding zeros of polynomials, SIAM J. Numer. Anal., Volume 15 (1978), pp. 497-510 | DOI

[5] Iliev, A. I. A generalization of Obreshkoff-Ehrlich method for multiple roots of polynomial equations, C. R. Acad. Bulg. Sci., Volume 49 (1996), pp. 23-34 | Zbl

[6] Iliev, A. I. A generalization of Obreshkoff-Ehrlich method for multiple roots of algebraic, trigonometric and exponential equations, Math. Balkanica, Volume 14 (2000), pp. 17-28 | Zbl

[7] Ivanov, S. I. A unified semilocal convergence analysis of a family of iterative algorithms for computing all zeros of a polynomial simultaneously, Numer. Algorithms, Volume 75 (2017), pp. 1193-1204 | DOI | Zbl

[8] Kyurkchiev, N. V.; Andreev, A. Ehrlich’s methods with a raised speed of convergence, Serdica Math. J., Volume 13 (1987), pp. 52-57 | Zbl

[9] Kyurkchiev, N. V.; Andreev, A.; Popov, V. Iterative methods for computation of all multiple roots an algebraic polynomial, Ann. Univ. Sofia Fac. Math. Mech., Volume 78 (1984), pp. 178-185 | Zbl

[10] Milovanović, G. V.; Petković, M. S. On the convergence order of a modified method for simultaneous finding polynomial zeros, Computing, Volume 30 (1983), pp. 171-178 | DOI

[11] Milovanović, G. V.; Petković, M. S. On computational efficiency of the iterative methods for simultaneous approximation of polynomial zeros, ACM Trans. Math. Soft., Volume 12 (1986), pp. 295-306 | DOI

[12] Petković, M. S.; Milovanović, G. V. A note on some improvements of the simultaneous method for determination of polynomial zeros, J. Comput. Appl. Math., Volume 9 (1983), pp. 65-69 | DOI

[13] Petković, M. S.; Milovanović, G. V.; Stefanović, L. V. On the convergence order of an accelerated simultaneous method for polynomial complex zeros, Z. Angew. Math. Mech., Volume 66 (1986), pp. 428-429

[14] Petković, M. S.; Milovanović, G. V.; Stefanović, L. V. Some higher-order methods for the simultaneous approximation of multiple polynomial zeros, Comput. Math. Appl. Ser. A, Volume 12 (1986), pp. 951-962 | DOI | Zbl

[15] Petković, M. S.; Neta, B.; Petković, L. D.; Džunić, J. Multipoint methods for solving nonlinear equations, Elsevier/ Academic Press, Amsterdam, 2013

[16] Proinov, P. D. New general convergence theory for iterative processes and its applications to Newton-Kantorovich type theorems, J. Complexity, Volume 26 (2010), pp. 3-42 | Zbl | DOI

[17] Proinov, P. D. General convergence theorems for iterative processes and applications to the Weierstrass root-finding method, J. Complexity, Volume 33 (2016), pp. 118-144 | DOI | Zbl

[18] Proinov, P. D. A general semilocal convergence theorem for simultaneous methods for polynomial zeros and its applications to Ehrlich’s and Dochev-Byrnev’s methods, Appl. Math. Comput., Volume 284 (2016), pp. 102-114 | DOI

[19] Proinov, P. D. On the local convergence of Ehrlich method for numerical computation of polynomial zeros, Calcolo, Volume 53 (2016), pp. 413-426 | DOI | Zbl

[20] Proinov, P. D. Unified convergence analysis for Picard iteration in n-dimensional vector spaces, Calcolo, Volume 2018 (2018), pp. 1-21 | DOI | Zbl

[21] Proinov, P. D.; Cholakov, S. I. Convergence of Chebyshev-like method for simultaneous approximation of multiple polynomial zeros, C. R. Acad. Bulg. Sci., Volume 67 (2014), pp. 907-918 | Zbl

[22] Proinov, P. D.; Vasileva, M. T. On the convergence of high-order Ehrlich-type iterative methods for approximating all zeros of a polynomial simultaneously, J. Inequal. Appl., Volume 2015 (2015), pp. 1-25 | DOI | Zbl

[23] Tashev, S.; Kyurkchiev, N. Certain modifications of Newton’s method for the approximate solution of algebraic equations, Serdica Bulg. Math. Publ., Volume 9 (1983), pp. 67-73

[24] Tilli, P. Convergence conditions of some methods for the simultaneous computation of polynomial zeros, Calcolo, Volume 35 (1998), pp. 3-15 | DOI

[25] Wang, D. R.; Zhao, F. G. Complexity analysis of a process for simultaneously obtaining all zeros of polynomials, Computing, Volume 43 (1989), pp. 187-197 | Zbl | DOI

Cité par Sources :