Mathematical modeling of the smoking dynamics using fractional differential equations with local and nonlocal kernel
Journal of nonlinear sciences and its applications, Tome 11 (2018) no. 8, p. 994-1014.

Voir la notice de l'article provenant de la source International Scientific Research Publications

In this paper, we analyze the fractional modeling of the giving up the smoking using the definitions of Liouville-Caputo and Atangana-Baleanu-Caputo fractional derivatives. Applying the homotopy analysis method and the Laplace transform with polynomial homotopy, the analytical solution of the smoking dynamics has obtained. Furthermore, using an iterative scheme by the Laplace transform, and the Atangana-Baleanu fractional integral, special solutions of the model are obtained. Uniqueness and existence of the solutions by the fixed-point theorem and Picard-Lindelof approach are studied. Finally, some numerical simulations are carried out for illustrating the results obtained.
DOI : 10.22436/jnsa.011.08.06
Classification : 92C50, 26A33, 44A10, 65H20
Keywords: Smoking model, Liouville-Caputo fractional derivative, Atangana-Baleanu fractional derivative, Laplace transform, homotopy method

Morales-Delgado, V. F.  1 ; Gómez-Aguilar, J. F.  2 ; Taneco-Hernández, M. A. 1 ; Escobar-Jiménez, R. F. 3 ; Olivares-Peregrino, V. H.  3

1 Facultad de Matematicas, Universidad Autonoma de Guerrero, Av. Lázaro Cárdenas S/N, Cd. Universitaria. Chilpancingo, Guerrero, Mexico
2 CONACyT-Tecnológico Nacional de México/CENIDET, Interior Internado Palmira S/N, Col. Palmira, C.P. 62490, Cuernavaca, Morelos, Mexico
3 Tecnológico Nacional de México/CENIDET, Interior Internado Palmira S/N, Col. Palmira, C.P. 62490, Cuernavaca, Morelos, Mexico
@article{JNSA_2018_11_8_a5,
     author = {Morales-Delgado, V. F.  and G\'omez-Aguilar, J. F.  and Taneco-Hern\'andez, M. A. and Escobar-Jim\'enez, R. F. and Olivares-Peregrino, V. H. },
     title = {Mathematical modeling of the smoking dynamics using fractional differential equations with local and nonlocal kernel},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {994-1014},
     publisher = {mathdoc},
     volume = {11},
     number = {8},
     year = {2018},
     doi = {10.22436/jnsa.011.08.06},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.08.06/}
}
TY  - JOUR
AU  - Morales-Delgado, V. F. 
AU  - Gómez-Aguilar, J. F. 
AU  - Taneco-Hernández, M. A.
AU  - Escobar-Jiménez, R. F.
AU  - Olivares-Peregrino, V. H. 
TI  - Mathematical modeling of the smoking dynamics using fractional differential equations with local and nonlocal kernel
JO  - Journal of nonlinear sciences and its applications
PY  - 2018
SP  - 994
EP  - 1014
VL  - 11
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.08.06/
DO  - 10.22436/jnsa.011.08.06
LA  - en
ID  - JNSA_2018_11_8_a5
ER  - 
%0 Journal Article
%A Morales-Delgado, V. F. 
%A Gómez-Aguilar, J. F. 
%A Taneco-Hernández, M. A.
%A Escobar-Jiménez, R. F.
%A Olivares-Peregrino, V. H. 
%T Mathematical modeling of the smoking dynamics using fractional differential equations with local and nonlocal kernel
%J Journal of nonlinear sciences and its applications
%D 2018
%P 994-1014
%V 11
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.08.06/
%R 10.22436/jnsa.011.08.06
%G en
%F JNSA_2018_11_8_a5
Morales-Delgado, V. F. ; Gómez-Aguilar, J. F. ; Taneco-Hernández, M. A.; Escobar-Jiménez, R. F.; Olivares-Peregrino, V. H. . Mathematical modeling of the smoking dynamics using fractional differential equations with local and nonlocal kernel. Journal of nonlinear sciences and its applications, Tome 11 (2018) no. 8, p. 994-1014. doi : 10.22436/jnsa.011.08.06. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.08.06/

[1] Algahtani, O. J.; Zeb, A.; Zaman, G.; Momani, S.; Jung, I. H. Mathematical study of smoking model by incorporating campaign class, Wulfenia, Volume 22 (2015), pp. 205-216

[2] B. S. T. Alkahtani Chua’s circuit model with Atangana-Baleanu derivative with fractional order, Chaos Solitons Fractals, Volume 89 (2016), pp. 547-551 | DOI | Zbl

[3] Atangana, A.; D. Baleanu New Fractional Derivatives with Nonlocal and Non-Singular Kernel: Theory and Application to Heat Transfer Model , Therm Sci., Volume 20 (2016), pp. 763-769

[4] Atangana, A.; I. Koca Model of Thin Viscous Fluid Sheet Flow within the Scope of Fractional Calculus: Fractional Derivative with and No Singular Kernel , Fund. Inform., Volume 151 (2017), pp. 145-159 | DOI | Zbl

[5] Castillo-Garsow, C.; Jordan-Salivia, G.; Herrera, A. R. Mathematical models for the dynamics of tobacco use, recovery, and relapse , Technical Report Series BU-1505-M, Cornell University, Ithaca, 1997

[6] Choi, J. S.; Kumar, D.; Singh, J.; Swroop, R. Analytical techniques for system of time fractional nonlinear differential equations, J. Korean Math. Soc., Volume 54 (2017), pp. 1209-1229 | Zbl

[7] Diethelm, K.; Ford, N. J.; Freed, A. D. Detailed error analysis for a fractional Adams method, Numer. Algorithms, Volume 36 (2004), pp. 31-52 | DOI | Zbl

[8] Din, Q.; Ozair, M.; Hussain, T.; Saeed, U. Qualitative behavior of a smoking model, Adv. Difference Equ., Volume 2016 (2016), pp. 1-12 | DOI | Zbl

[9] Ertürk, V. S.; Zaman, G.; S. Momani A numeric-analytic method for approximating a giving up smoking model containing fractional derivatives, Comput. Math. Appl., Volume 64 (2012), pp. 3065-3074 | Zbl | DOI

[10] Haq, F.; Shah, K.; Rahman, G. ur; M. Shahzad Numerical solution of fractional order smoking model via laplace Adomian decomposition method, Alexandria Engineering Journal, Volume 2017 (2017), pp. 1-9 | DOI

[11] J. Hristov Integral balance solutions to applied models involving time-fractional derivatives-The scope of the method and results thereof, Commun. Frac. Calc., Volume 4 (2013), pp. 64-104

[12] Hristov, J. Integral-Balance Solution to Nonlinear Subdiffusion Equation, Frontiers in Fractional Calculus, Volume 2017 (2017), pp. 71-106

[13] Kumar, S. A new analytical modelling for telegraph equation via Laplace transform, Appl. Math. Model., Volume 38 (2014), pp. 3154-3163 | DOI

[14] Kumar, S.; Kumar, A.; Argyros, I. K. A new analysis for the Keller-Segel model of fractional order, Numer. Algorithms, Volume 75 (2017), pp. 213-228 | DOI | Zbl

[15] Kumar, S.; M. M. Rashidi New analytical method for gas dynamic equation arising in shock fronts, Comput. Phys. Commun., Volume 185 (2014), pp. 1947-1954 | DOI

[16] Kumar, D.; Singh, J.; Qurashi, M. M. Al; D. Baleanu Analysis of logistic equation pertaining to a new fractional derivative with non-singular kernel , Adv. Mech. Eng., Volume 9 (2017), pp. 1-8 | DOI

[17] Kumar, D.; Singh, J.; D. Baleanu A new numerical algorithm for fractional Fitzhugh-Nagumo equation arising in transmission of nerve impulses, Nonlinear Dynam., Volume 91 (2018), pp. 307-317 | DOI

[18] Kumar, D.; Singh, J.; Baleanu, D. A new analysis of the Fornberg-Whitham equation pertaining to a fractional derivative with Mittag-Leffler-type kernel , D. Eur. Phys. J. Plus, Volume 133 (2018), pp. 1-10 | DOI

[19] Kumar, D.; Singh, J.; Baleanu, D.; Sushila Analysis of regularized long-wave equation associated with a new fractional operator with Mittag-Leffler type kernel , Phys. A, Volume 492 (2018), pp. 155-167 | DOI

[20] Li, C. P.; C. X. Tao On the fractional Adams method, Comput. Math. Appl., Volume 58 (2009), pp. 1573-1588 | DOI

[21] Odibat, Z.; Bataineh, A. S. An adaptation of homotopy analysis method for reliable treatment of strongly nonlinear problems: construction of homotopy polynomials, Math. Meth. Appl. Sci., Volume 38 (2015), pp. 991-1000 | DOI | Zbl

[22] K. M. Owolabi Mathematical analysis and numerical simulation of chaotic noninteger order differential systems with Riemann-Liouville derivative, Numer. Methods Partial Differential Equations, Volume 34 (2018), pp. 274-295 | DOI | Zbl

[23] K. M. Owolabi Mathematical modelling and analysis of two-component system with Caputo fractional derivative order, Chaos Solitons Fractals, Volume 103 (2017), pp. 544-554 | Zbl | DOI

[24] K. M. Owolabi Robust and adaptive techniques for numerical simulation of nonlinear partial differential equations of fractional order, Commun. Nonlinear Sci. Numer. Simul., Volume 44 (2017), pp. 304-317 | DOI

[25] Owolabi, K. M.; A. Atangana Numerical approximation of nonlinear fractional parabolic differential equations with Caputo-Fabrizio derivative in Riemann-Liouville sense , Chaos Solitons Fractals, Volume 99 (2017), pp. 171-179 | DOI | Zbl

[26] Owolabi, K. M.; Atangana, A. Numerical Simulation of Noninteger Order System in Subdiffusive, Diffusive, and Superdiffusive Scenarios, J. Comput. Nonlinear Dynam, Volume 12 (2017), pp. 1-7 | DOI

[27] Podlubny, I. Fractional Differential Equations , Academic Press, San Diego, 1999

[28] Rahimi, Z.; Sumelka, W.; Yang, X. J. Linear and non-linear free vibration of nano beams based on a new fractional non-local theory, Engineering Computations, Volume 34 (2017), pp. 1754-1770 | DOI

[29] Saad, K. M.; AL-Shareef, E. H.; Mohamed, M. S.; Yang, X. J. Optimal q-homotopy analysis method for time-space fractional gas dynamics equation, D. Eur. Phys. J. Plus, Volume 132 (2017), pp. 1-23 | DOI

[30] Sharomi, O.; A. B. Gumel Curtailing smoking dynamics: a mathematical modeling approach, Appl. Math. Comput., Volume 195 (2008), pp. 475-499 | Zbl | DOI

[31] Singh, J.; Kumar, D.; Qurashi, M. Al; D. Baleanu A new fractional model for giving up smoking dynamics, Adv. Difference Equ., Volume 2017 (2017), pp. 1-16 | DOI

[32] Singh, J.; Kumar, D.; Hammouch, Z.; Atangana, A. A fractional epidemiological model for computer viruses pertaining to a new fractional derivative, Appl. Math. Comput., Volume 316 (2018), pp. 504-515 | DOI

[33] Sun, Y.; Indraratna, B.; Carter, J. P.; Marchant, T.; Nimbalkar, S. Application of fractional calculus in modelling ballast deformation under cyclic loading, Comput. Geotech., Volume 82 (2017), pp. 16-30 | DOI

[34] Yadav, A.; Srivastava, P. K.; Kumar, A. Mathematical model for smoking: Effect of determination and education, Int. J. Biomath., Volume 8 (2015), pp. 1-14 | Zbl | DOI

[35] Zaman, G. Qualitative behavior of giving up smoking models, Bull. Malays. Math. Sci. Soc., Volume 34 (2011), pp. 1-12 | Zbl

[36] Zeb, A.; Bibi, F.; Zaman, G. Optimal control strategies in square root dynamics of smoking model, International Journal of Scientific World, Volume 3 (2015), pp. 91-97

[37] Zeb, A.; Zaman, G.; Erturk, V. S.; Alzalg, B.; Yousafzai, F.; Khan, M. Approximating a Giving Up Smoking Dynamic on Adolescent Nicotine Dependence in Fractional Order, PloS one, Volume 11 (2016), pp. 1-10 | DOI

[38] Zhang, Y. D.; Wang, S. H.; Yang, J.-F.; Zhang, Z.; Phillips, P.; Sun, P.; Yan, J. A Comprehensive Survey on Fractional Fourier Transform, Fund. Inform., Volume 151 (2017), pp. 1-48 | DOI | Zbl

Cité par Sources :