Voir la notice de l'article provenant de la source International Scientific Research Publications
Morales-Delgado, V. F.  1 ; Gómez-Aguilar, J. F.  2 ; Taneco-Hernández, M. A. 1 ; Escobar-Jiménez, R. F. 3 ; Olivares-Peregrino, V. H.  3
@article{JNSA_2018_11_8_a5, author = {Morales-Delgado, V. F. and G\'omez-Aguilar, J. F. and Taneco-Hern\'andez, M. A. and Escobar-Jim\'enez, R. F. and Olivares-Peregrino, V. H. }, title = {Mathematical modeling of the smoking dynamics using fractional differential equations with local and nonlocal kernel}, journal = {Journal of nonlinear sciences and its applications}, pages = {994-1014}, publisher = {mathdoc}, volume = {11}, number = {8}, year = {2018}, doi = {10.22436/jnsa.011.08.06}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.08.06/} }
TY - JOUR AU - Morales-Delgado, V. F. AU - Gómez-Aguilar, J. F. AU - Taneco-Hernández, M. A. AU - Escobar-Jiménez, R. F. AU - Olivares-Peregrino, V. H. TI - Mathematical modeling of the smoking dynamics using fractional differential equations with local and nonlocal kernel JO - Journal of nonlinear sciences and its applications PY - 2018 SP - 994 EP - 1014 VL - 11 IS - 8 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.08.06/ DO - 10.22436/jnsa.011.08.06 LA - en ID - JNSA_2018_11_8_a5 ER -
%0 Journal Article %A Morales-Delgado, V. F. %A Gómez-Aguilar, J. F. %A Taneco-Hernández, M. A. %A Escobar-Jiménez, R. F. %A Olivares-Peregrino, V. H. %T Mathematical modeling of the smoking dynamics using fractional differential equations with local and nonlocal kernel %J Journal of nonlinear sciences and its applications %D 2018 %P 994-1014 %V 11 %N 8 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.08.06/ %R 10.22436/jnsa.011.08.06 %G en %F JNSA_2018_11_8_a5
Morales-Delgado, V. F. ; Gómez-Aguilar, J. F. ; Taneco-Hernández, M. A.; Escobar-Jiménez, R. F.; Olivares-Peregrino, V. H. . Mathematical modeling of the smoking dynamics using fractional differential equations with local and nonlocal kernel. Journal of nonlinear sciences and its applications, Tome 11 (2018) no. 8, p. 994-1014. doi : 10.22436/jnsa.011.08.06. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.08.06/
[1] Mathematical study of smoking model by incorporating campaign class, Wulfenia, Volume 22 (2015), pp. 205-216
[2] Chua’s circuit model with Atangana-Baleanu derivative with fractional order, Chaos Solitons Fractals, Volume 89 (2016), pp. 547-551 | DOI | Zbl
[3] New Fractional Derivatives with Nonlocal and Non-Singular Kernel: Theory and Application to Heat Transfer Model , Therm Sci., Volume 20 (2016), pp. 763-769
[4] Model of Thin Viscous Fluid Sheet Flow within the Scope of Fractional Calculus: Fractional Derivative with and No Singular Kernel , Fund. Inform., Volume 151 (2017), pp. 145-159 | DOI | Zbl
[5] Mathematical models for the dynamics of tobacco use, recovery, and relapse , Technical Report Series BU-1505-M, Cornell University, Ithaca, 1997
[6] Analytical techniques for system of time fractional nonlinear differential equations, J. Korean Math. Soc., Volume 54 (2017), pp. 1209-1229 | Zbl
[7] Detailed error analysis for a fractional Adams method, Numer. Algorithms, Volume 36 (2004), pp. 31-52 | DOI | Zbl
[8] Qualitative behavior of a smoking model, Adv. Difference Equ., Volume 2016 (2016), pp. 1-12 | DOI | Zbl
[9] A numeric-analytic method for approximating a giving up smoking model containing fractional derivatives, Comput. Math. Appl., Volume 64 (2012), pp. 3065-3074 | Zbl | DOI
[10] Numerical solution of fractional order smoking model via laplace Adomian decomposition method, Alexandria Engineering Journal, Volume 2017 (2017), pp. 1-9 | DOI
[11] Integral balance solutions to applied models involving time-fractional derivatives-The scope of the method and results thereof, Commun. Frac. Calc., Volume 4 (2013), pp. 64-104
[12] Integral-Balance Solution to Nonlinear Subdiffusion Equation, Frontiers in Fractional Calculus, Volume 2017 (2017), pp. 71-106
[13] A new analytical modelling for telegraph equation via Laplace transform, Appl. Math. Model., Volume 38 (2014), pp. 3154-3163 | DOI
[14] A new analysis for the Keller-Segel model of fractional order, Numer. Algorithms, Volume 75 (2017), pp. 213-228 | DOI | Zbl
[15] New analytical method for gas dynamic equation arising in shock fronts, Comput. Phys. Commun., Volume 185 (2014), pp. 1947-1954 | DOI
[16] Analysis of logistic equation pertaining to a new fractional derivative with non-singular kernel , Adv. Mech. Eng., Volume 9 (2017), pp. 1-8 | DOI
[17] A new numerical algorithm for fractional Fitzhugh-Nagumo equation arising in transmission of nerve impulses, Nonlinear Dynam., Volume 91 (2018), pp. 307-317 | DOI
[18] A new analysis of the Fornberg-Whitham equation pertaining to a fractional derivative with Mittag-Leffler-type kernel , D. Eur. Phys. J. Plus, Volume 133 (2018), pp. 1-10 | DOI
[19] Analysis of regularized long-wave equation associated with a new fractional operator with Mittag-Leffler type kernel , Phys. A, Volume 492 (2018), pp. 155-167 | DOI
[20] On the fractional Adams method, Comput. Math. Appl., Volume 58 (2009), pp. 1573-1588 | DOI
[21] An adaptation of homotopy analysis method for reliable treatment of strongly nonlinear problems: construction of homotopy polynomials, Math. Meth. Appl. Sci., Volume 38 (2015), pp. 991-1000 | DOI | Zbl
[22] Mathematical analysis and numerical simulation of chaotic noninteger order differential systems with Riemann-Liouville derivative, Numer. Methods Partial Differential Equations, Volume 34 (2018), pp. 274-295 | DOI | Zbl
[23] Mathematical modelling and analysis of two-component system with Caputo fractional derivative order, Chaos Solitons Fractals, Volume 103 (2017), pp. 544-554 | Zbl | DOI
[24] Robust and adaptive techniques for numerical simulation of nonlinear partial differential equations of fractional order, Commun. Nonlinear Sci. Numer. Simul., Volume 44 (2017), pp. 304-317 | DOI
[25] Numerical approximation of nonlinear fractional parabolic differential equations with Caputo-Fabrizio derivative in Riemann-Liouville sense , Chaos Solitons Fractals, Volume 99 (2017), pp. 171-179 | DOI | Zbl
[26] Numerical Simulation of Noninteger Order System in Subdiffusive, Diffusive, and Superdiffusive Scenarios, J. Comput. Nonlinear Dynam, Volume 12 (2017), pp. 1-7 | DOI
[27] Fractional Differential Equations , Academic Press, San Diego, 1999
[28] Linear and non-linear free vibration of nano beams based on a new fractional non-local theory, Engineering Computations, Volume 34 (2017), pp. 1754-1770 | DOI
[29] Optimal q-homotopy analysis method for time-space fractional gas dynamics equation, D. Eur. Phys. J. Plus, Volume 132 (2017), pp. 1-23 | DOI
[30] Curtailing smoking dynamics: a mathematical modeling approach, Appl. Math. Comput., Volume 195 (2008), pp. 475-499 | Zbl | DOI
[31] A new fractional model for giving up smoking dynamics, Adv. Difference Equ., Volume 2017 (2017), pp. 1-16 | DOI
[32] A fractional epidemiological model for computer viruses pertaining to a new fractional derivative, Appl. Math. Comput., Volume 316 (2018), pp. 504-515 | DOI
[33] Application of fractional calculus in modelling ballast deformation under cyclic loading, Comput. Geotech., Volume 82 (2017), pp. 16-30 | DOI
[34] Mathematical model for smoking: Effect of determination and education, Int. J. Biomath., Volume 8 (2015), pp. 1-14 | Zbl | DOI
[35] Qualitative behavior of giving up smoking models, Bull. Malays. Math. Sci. Soc., Volume 34 (2011), pp. 1-12 | Zbl
[36] Optimal control strategies in square root dynamics of smoking model, International Journal of Scientific World, Volume 3 (2015), pp. 91-97
[37] Approximating a Giving Up Smoking Dynamic on Adolescent Nicotine Dependence in Fractional Order, PloS one, Volume 11 (2016), pp. 1-10 | DOI
[38] A Comprehensive Survey on Fractional Fourier Transform, Fund. Inform., Volume 151 (2017), pp. 1-48 | DOI | Zbl
Cité par Sources :