Voir la notice de l'article provenant de la source International Scientific Research Publications
Eroglu, Ahmet  1 ; Gadjiev, Tahir  2 ; Namazov, Faig  3
@article{JNSA_2018_11_8_a4, author = {Eroglu, Ahmet and Gadjiev, Tahir and Namazov, Faig }, title = {Fractional integral associated to {Schr\"odinger} operator on the {Heisenberg} groups in central generalized {Morrey} spaces}, journal = {Journal of nonlinear sciences and its applications}, pages = {984-993}, publisher = {mathdoc}, volume = {11}, number = {8}, year = {2018}, doi = {10.22436/jnsa.011.08.05}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.08.05/} }
TY - JOUR AU - Eroglu, Ahmet AU - Gadjiev, Tahir AU - Namazov, Faig TI - Fractional integral associated to Schrödinger operator on the Heisenberg groups in central generalized Morrey spaces JO - Journal of nonlinear sciences and its applications PY - 2018 SP - 984 EP - 993 VL - 11 IS - 8 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.08.05/ DO - 10.22436/jnsa.011.08.05 LA - en ID - JNSA_2018_11_8_a4 ER -
%0 Journal Article %A Eroglu, Ahmet %A Gadjiev, Tahir %A Namazov, Faig %T Fractional integral associated to Schrödinger operator on the Heisenberg groups in central generalized Morrey spaces %J Journal of nonlinear sciences and its applications %D 2018 %P 984-993 %V 11 %N 8 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.08.05/ %R 10.22436/jnsa.011.08.05 %G en %F JNSA_2018_11_8_a4
Eroglu, Ahmet ; Gadjiev, Tahir ; Namazov, Faig . Fractional integral associated to Schrödinger operator on the Heisenberg groups in central generalized Morrey spaces. Journal of nonlinear sciences and its applications, Tome 11 (2018) no. 8, p. 984-993. doi : 10.22436/jnsa.011.08.05. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.08.05/
[1] Fractional integral associated with Schrödinger operator on vanishing generalized Morrey spaces, accepted in J. Math. Ineq., , 2018
[2] Marcinkiewicz integrals associated with Schrödinger operators and their commutators on vanishing generalized Morrey spaces, Bound. Value Probl., Volume 2017 (2017), pp. 1-16 | Zbl | DOI
[3] Spaces of bounded \(\lambda\)-central mean oscillation, Morrey spaces, and \(\lambda\)-central Carleson measures, Collect. Math., Volume 51 (2000), pp. 1-47 | Zbl
[4] Commutators of Riesz transforms related to Schödinger operators, J. Fourier Anal. Appl., Volume 17 (2011), pp. 115-134 | DOI
[5] Weighted estimates for commutators of some singular integrals related to Schrödinger operators, Bull. Sci. Math., Volume 138 (2014), pp. 270-292 | Zbl | DOI
[6] An introduction to the Heisenberg group and the sub-Riemannian isoperimetric problem, Birkhuser Verlag, Basel, 2007 | DOI | Zbl
[7] Interior estimates in Morrey spaces for strong solutions to nondivergence form equations with discontinuous coefficients, J. Funct. Anal., Volume 112 (1993), pp. 241-256 | DOI | Zbl
[8] A note of the fractional integral operators in generalized Morrey spaces on Heisenberg groups, Trans. Natl. Acad. Sci. Azerb. Ser. Phys.-Tech. Math. Sci., Volume 37 (2017), pp. 86-91
[9] Characterizations for the fractional integral operators in generalized Morrey spaces on Carnot groups, Math. Notes, Volume 102 (2017), pp. 127-139 | Zbl | DOI
[10] Boundedness of operators in Morrey spaces on homogeneous spaces and its applications, Acta Math. Sinica (Chin. Ser.), Volume 14 (1998), pp. 625-634
[11] Estimates for the \(\partial_b\)-complex and analysis on the Heisenberg group, Comm. Pure Appl. Math., Volume 27 (1974), pp. 429-522 | DOI
[12] Hardy Spaces on Homogeneous Groups, Princeton University Press, Princeton, 1982
[13] Boundedness of the maximal, potential and singular operators in the generalized Morrey spaces, J. Inequal. Appl., Volume 2009 (2009), pp. 1-20 | DOI
[14] Function spaces and integral operators associated with Schrödinger operators: an overview, Proc. Inst. Math. Mech. Natl. Acad. Sci. Azerb., Volume 40 (2014), pp. 178-202 | Zbl
[15] Function spaces, integral operators and two weighted inequalities on homogeneous groups, Some applications, Elm, Baku, 1999
[16] Generalized local Morrey spaces and fractional integral operators with rough kernel, J. Math. Sci. (N.Y.), Volume 193 (2013), pp. 211-227 | Zbl | DOI
[17] Integral operators on function spaces on the homogeneous groups and on domains in \(R^n\), Doctors degree dissertation, Mat. Inst. Steklov, Moscow, 1994
[18] Riesz potential in generalized Morrey spaces on the Heisenberg group, J. Math. Sci. (N. Y.), Volume 189 (2013), pp. 365-382 | Zbl | DOI
[19] Dirichlet boundary value problems for uniformly elliptic equations in modified local generalized Sobolev-Morrey spaces, Electron. J. Qual. Theory Differ. Equ., Volume 2017 (2017), pp. 1-17
[20] Schrödinger type operators on local generalized Morrey spaces related to certain nonnegative potentials (submitted)
[21] Boundedness of the fractional maximal operator in generalized Morrey space on the Heisenberg group, Indian J. Pure Appl. Math., Volume 44 (2013), pp. 185-202 | DOI | Zbl
[22] Commutators and generalized local Morrey spaces, J. Math. Anal. Appl., Volume 457 (2018), pp. 1388-1402 | Zbl | DOI
[23] Estimations \(L_p\) des oprateurs de Schrödinger sur les groupes nilpotents, J. Funct. Anal., Volume 161 (1999), pp. 152-218 | DOI
[24] On the solutions of quasi-linear elliptic partial differential equations, Trans. Amer. Math. Soc., Volume 43 (1938), pp. 126-166 | DOI
[25] Sobolev-Morrey spaces related to an ultraparabolic equation, Manuscripta Math., Volume 96 (1998), pp. 371-392 | DOI | Zbl
[26] \(L_p\) estimates for Schrödinger operators with certain potentials, Ann. Inst. Fourier (Grenoble), Volume 45 (1995), pp. 513-546
[27] Harmonic Analysis: Real-variable methods, orthogonality, and oscillatory integrals, Princeton University Press, Princeton, 1993
[28] Boundedness for some Schrödinger type operator on Morrey spaces related to certain nonnegative potentials, J. Math. Anal. Appl., Volume 355 (2009), pp. 101-109 | DOI
[29] Measure and integral: An introduction to real analysis , Marcel Dekker, New York-Basel, 1977 | Zbl
Cité par Sources :