Fractional integral associated to Schrödinger operator on the Heisenberg groups in central generalized Morrey spaces
Journal of nonlinear sciences and its applications, Tome 11 (2018) no. 8, p. 984-993.

Voir la notice de l'article provenant de la source International Scientific Research Publications

Let $L=-\Delta_{\mathbb{H}_n}+V$ be a Schrödinger operator on the Heisenberg groups $\mathbb{H}_n$, where the non-negative potential $V$ belongs to the reverse Hölder class $RH_{Q/2}$ and $Q$ is the homogeneous dimension of $\mathbb{H}_n$. Let $b$ belong to a new $BMO_{\theta}(\mathbb{H}_n,\rho)$ space, and let ${\cal I}_{\beta}^{L}$ be the fractional integral operator associated with $L$. In this paper, we study the boundedness of the operator ${\cal I}_{\beta}^{L}$ and its commutators $[b,{\cal I}_{\beta}^{L}]$ with $b \in BMO_{\theta}(\mathbb{H}_n,\rho)$ on central generalized Morrey spaces $LM_{p,\varphi}^{\alpha,V}(\mathbb{H}_n)$ and generalized Morrey spaces $M_{p,\varphi}^{\alpha,V}(\mathbb{H}_n)$ associated with Schrödinger operator. We find the sufficient conditions on the pair $(\varphi_1,\varphi_2)$ which ensures the boundedness of the operator ${\cal I}_{\beta}^{L}$ from $LM_{p,\varphi_1}^{\alpha,V}(\mathbb{H}_n)$ to $LM_{q,\varphi_2}^{\alpha,V}(\mathbb{H}_n)$ and from $M_{p,\varphi_1}^{\alpha,V}(\mathbb{H}_n)$ to $M_{q,\varphi_2}^{\alpha,V}(\mathbb{H}_n)$, $1/p-1/q=\beta/Q$. When $b$ belongs to $BMO_{\theta}(\mathbb{H}_n,\rho)$ and $(\varphi_1,\varphi_2)$ satisfies some conditions, we also show that the commutator operator $[b,{\cal I}_{\beta}^{L}]$ is bounded from $LM_{p,\varphi_1}^{\alpha,V}(\mathbb{H}_n)$ to $LM_{q,\varphi_2}^{\alpha,V}(\mathbb{H}_n)$ and from $M_{p,\varphi_1}^{\alpha,V}$ to $M_{q,\varphi_2}^{\alpha,V}$, $1/p-1/q=\beta/Q$.
DOI : 10.22436/jnsa.011.08.05
Classification : 22E30, 35J10, 42B35, 47H50
Keywords: Schrödinger operator, Heisenberg group, central generalized Morrey space, fractional integral, commutator, BMO

Eroglu, Ahmet  1 ; Gadjiev, Tahir  2 ; Namazov, Faig  3

1 Department of Mathematics, Nigde Omer Halisdemir University, Nigde, Turkey
2 Institute of Mathematics and Mechanics, NAS of Azerbaijan, AZ1141 Baku, Azerbaijan
3 Baku State University, AZ1141 Baku, Azerbaijan
@article{JNSA_2018_11_8_a4,
     author = {Eroglu, Ahmet  and Gadjiev, Tahir  and Namazov, Faig },
     title = {Fractional integral associated to {Schr\"odinger} operator on the {Heisenberg} groups in central generalized {Morrey} spaces},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {984-993},
     publisher = {mathdoc},
     volume = {11},
     number = {8},
     year = {2018},
     doi = {10.22436/jnsa.011.08.05},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.08.05/}
}
TY  - JOUR
AU  - Eroglu, Ahmet 
AU  - Gadjiev, Tahir 
AU  - Namazov, Faig 
TI  - Fractional integral associated to Schrödinger operator on the Heisenberg groups in central generalized Morrey spaces
JO  - Journal of nonlinear sciences and its applications
PY  - 2018
SP  - 984
EP  - 993
VL  - 11
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.08.05/
DO  - 10.22436/jnsa.011.08.05
LA  - en
ID  - JNSA_2018_11_8_a4
ER  - 
%0 Journal Article
%A Eroglu, Ahmet 
%A Gadjiev, Tahir 
%A Namazov, Faig 
%T Fractional integral associated to Schrödinger operator on the Heisenberg groups in central generalized Morrey spaces
%J Journal of nonlinear sciences and its applications
%D 2018
%P 984-993
%V 11
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.08.05/
%R 10.22436/jnsa.011.08.05
%G en
%F JNSA_2018_11_8_a4
Eroglu, Ahmet ; Gadjiev, Tahir ; Namazov, Faig . Fractional integral associated to Schrödinger operator on the Heisenberg groups in central generalized Morrey spaces. Journal of nonlinear sciences and its applications, Tome 11 (2018) no. 8, p. 984-993. doi : 10.22436/jnsa.011.08.05. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.08.05/

[1] Akbulut, A.; Guliyev, R. V.; Celik, S.; Omarova, M. N. Fractional integral associated with Schrödinger operator on vanishing generalized Morrey spaces, accepted in J. Math. Ineq., , 2018

[2] Akbulut, A.; Guliyev, V. S.; Omarova, M. N. Marcinkiewicz integrals associated with Schrödinger operators and their commutators on vanishing generalized Morrey spaces, Bound. Value Probl., Volume 2017 (2017), pp. 1-16 | Zbl | DOI

[3] Alvarez, J.; Lakey, J.; Guzman-Partida, M. Spaces of bounded \(\lambda\)-central mean oscillation, Morrey spaces, and \(\lambda\)-central Carleson measures, Collect. Math., Volume 51 (2000), pp. 1-47 | Zbl

[4] Bongioanni, B.; Harboure, E.; Salinas, O. Commutators of Riesz transforms related to Schödinger operators, J. Fourier Anal. Appl., Volume 17 (2011), pp. 115-134 | DOI

[5] Bui, T. Weighted estimates for commutators of some singular integrals related to Schrödinger operators, Bull. Sci. Math., Volume 138 (2014), pp. 270-292 | Zbl | DOI

[6] Capogna, L.; Danielli, D.; Pauls, S. D.; Tyson, J. T. An introduction to the Heisenberg group and the sub-Riemannian isoperimetric problem, Birkhuser Verlag, Basel, 2007 | DOI | Zbl

[7] Fazio, G. Di; Ragusa, M. A. Interior estimates in Morrey spaces for strong solutions to nondivergence form equations with discontinuous coefficients, J. Funct. Anal., Volume 112 (1993), pp. 241-256 | DOI | Zbl

[8] Eroglu, A.; Azizov, J. V. A note of the fractional integral operators in generalized Morrey spaces on Heisenberg groups, Trans. Natl. Acad. Sci. Azerb. Ser. Phys.-Tech. Math. Sci., Volume 37 (2017), pp. 86-91

[9] Eroglu, A.; Guliyev, V. S.; Azizov, C. V. Characterizations for the fractional integral operators in generalized Morrey spaces on Carnot groups, Math. Notes, Volume 102 (2017), pp. 127-139 | Zbl | DOI

[10] Fan, D. S.; Lu, S. Z.; Yang, D. C. Boundedness of operators in Morrey spaces on homogeneous spaces and its applications, Acta Math. Sinica (Chin. Ser.), Volume 14 (1998), pp. 625-634

[11] Folland, G. B.; Stein, E. M. Estimates for the \(\partial_b\)-complex and analysis on the Heisenberg group, Comm. Pure Appl. Math., Volume 27 (1974), pp. 429-522 | DOI

[12] Folland, G. B.; Stein, E. M. Hardy Spaces on Homogeneous Groups, Princeton University Press, Princeton, 1982

[13] Guliyev, V. S. Boundedness of the maximal, potential and singular operators in the generalized Morrey spaces, J. Inequal. Appl., Volume 2009 (2009), pp. 1-20 | DOI

[14] V. S. Guliyev Function spaces and integral operators associated with Schrödinger operators: an overview, Proc. Inst. Math. Mech. Natl. Acad. Sci. Azerb., Volume 40 (2014), pp. 178-202 | Zbl

[15] Guliyev, V. S. Function spaces, integral operators and two weighted inequalities on homogeneous groups, Some applications, Elm, Baku, 1999

[16] Guliyev, V. S. Generalized local Morrey spaces and fractional integral operators with rough kernel, J. Math. Sci. (N.Y.), Volume 193 (2013), pp. 211-227 | Zbl | DOI

[17] Guliyev, V. S. Integral operators on function spaces on the homogeneous groups and on domains in \(R^n\), Doctors degree dissertation, Mat. Inst. Steklov, Moscow, 1994

[18] Guliyev, V. S.; Eroglu, A.; Y. Y. Mammadov Riesz potential in generalized Morrey spaces on the Heisenberg group, J. Math. Sci. (N. Y.), Volume 189 (2013), pp. 365-382 | Zbl | DOI

[19] Guliyev, V. S.; Gadjiev, T. S.; Galandarova, S. Dirichlet boundary value problems for uniformly elliptic equations in modified local generalized Sobolev-Morrey spaces, Electron. J. Qual. Theory Differ. Equ., Volume 2017 (2017), pp. 1-17

[20] Guliyev, V. S.; Guliyev, R. V.; Omarova, M. N.; Ragusa, M. A. Schrödinger type operators on local generalized Morrey spaces related to certain nonnegative potentials (submitted)

[21] Guliyev, V. S.; Mammadov, Y. Y. Boundedness of the fractional maximal operator in generalized Morrey space on the Heisenberg group, Indian J. Pure Appl. Math., Volume 44 (2013), pp. 185-202 | DOI | Zbl

[22] Guliyev, V. S.; Omarova, M. N.; Ragusa, M. A.; Scapellato, A. Commutators and generalized local Morrey spaces, J. Math. Anal. Appl., Volume 457 (2018), pp. 1388-1402 | Zbl | DOI

[23] Li, H. Q. Estimations \(L_p\) des oprateurs de Schrödinger sur les groupes nilpotents, J. Funct. Anal., Volume 161 (1999), pp. 152-218 | DOI

[24] Morrey, C. B. On the solutions of quasi-linear elliptic partial differential equations, Trans. Amer. Math. Soc., Volume 43 (1938), pp. 126-166 | DOI

[25] Polidoro, S.; M. A. Ragusa Sobolev-Morrey spaces related to an ultraparabolic equation, Manuscripta Math., Volume 96 (1998), pp. 371-392 | DOI | Zbl

[26] Shen, Z. \(L_p\) estimates for Schrödinger operators with certain potentials, Ann. Inst. Fourier (Grenoble), Volume 45 (1995), pp. 513-546

[27] Stein, E. M. Harmonic Analysis: Real-variable methods, orthogonality, and oscillatory integrals, Princeton University Press, Princeton, 1993

[28] Tang, L.; Dong, J. Boundedness for some Schrödinger type operator on Morrey spaces related to certain nonnegative potentials, J. Math. Anal. Appl., Volume 355 (2009), pp. 101-109 | DOI

[29] Wheeden, R.; A. Zygmund Measure and integral: An introduction to real analysis , Marcel Dekker, New York-Basel, 1977 | Zbl

Cité par Sources :