Voir la notice de l'article provenant de la source International Scientific Research Publications
Kim, Min-Soo  1 ; Kim, Daeyeoul  2
@article{JNSA_2018_11_8_a3, author = {Kim, Min-Soo and Kim, Daeyeoul }, title = {The {\(q\)-Stirling} numbers of the second kind and its applications}, journal = {Journal of nonlinear sciences and its applications}, pages = {971-983}, publisher = {mathdoc}, volume = {11}, number = {8}, year = {2018}, doi = {10.22436/jnsa.011.08.04}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.08.04/} }
TY - JOUR AU - Kim, Min-Soo AU - Kim, Daeyeoul TI - The \(q\)-Stirling numbers of the second kind and its applications JO - Journal of nonlinear sciences and its applications PY - 2018 SP - 971 EP - 983 VL - 11 IS - 8 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.08.04/ DO - 10.22436/jnsa.011.08.04 LA - en ID - JNSA_2018_11_8_a3 ER -
%0 Journal Article %A Kim, Min-Soo %A Kim, Daeyeoul %T The \(q\)-Stirling numbers of the second kind and its applications %J Journal of nonlinear sciences and its applications %D 2018 %P 971-983 %V 11 %N 8 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.08.04/ %R 10.22436/jnsa.011.08.04 %G en %F JNSA_2018_11_8_a3
Kim, Min-Soo ; Kim, Daeyeoul . The \(q\)-Stirling numbers of the second kind and its applications. Journal of nonlinear sciences and its applications, Tome 11 (2018) no. 8, p. 971-983. doi : 10.22436/jnsa.011.08.04. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.08.04/
[1] Close encounters with the Stirling numbers of the second kind, Math. Mag., Volume 85 (2012), pp. 252-266 | Zbl | DOI
[2] q-Stirling numbers: a new view, Adv. Appl. Math., Volume 86 (2017), pp. 50-80 | DOI | Zbl
[3] q-Bernoulli numbers and polynomials , Duke Math. J., Volume 15 (1948), pp. 987-1000 | DOI | Zbl
[4] On abelian fields, Trans. Amer. Math. Soc., Volume 35 (1933), pp. 122-136 | DOI
[5] On the q-differences of the generalized q-factorials, J. Statist. Plann. Inference, Volume 54 (1996), pp. 31-43 | DOI | Zbl
[6] Operatormethoden fur q-Identitaten (German) , Monatsh. Math., Volume 88 (1979), pp. 87-105 | DOI
[7] Advanced Combinatorics , Springer Netherlands, Dordrecht, 1974 | DOI
[8] A q-analogue of Mahler expansions I, Adv. Math., Volume 153 (2000), pp. 185-230 | Zbl | DOI
[9] On p, q-binomial coefficients, Integers, Volume 8 (2008), pp. 1-16
[10] The Hankel transform of q-noncentral Bell numbers, Int. J. Math. Math. Sci., Volume 2015 (2015), pp. 1-10 | Zbl
[11] On p, q-difference operator, J. Korean Math. Soc., Volume 49 (2012), pp. 537-547 | DOI | Zbl
[12] Euler’s formula for nth differences of powers, Amer. Math. Monthly, Volume 85 (1978), pp. 450-467 | DOI
[13] The q-Stirling numbers of first and second kinds, Duke Math. J., Volume 28 (1961), pp. 281-289 | DOI
[14] Uber die Summerung der Reihen von der Form \(A\phi(0), A_1\phi(1)x, A_2\phi(2)x^2, . . . A_n\phi(n)x^n, . . . ,\) wo A eine beliebige constante Gre, \(A_n\) eine beliebige und \(\phi(n)\) eine ganze rationale algebraische Function der positiven ganzen Zahl n bezeichnet, J. Reine Angew. Math., Volume 25 (1843), pp. 240-279 | DOI
[15] On q-functions and a certain difference operator, Trans. Roy. Soc. Edinburgh, Volume 46 (1909), pp. 253-281 | DOI
[16] Calculus of finite differences, Chelsea, New York, 1950
[17] A note on q-difference operators, Commun. Korean Math. Soc., Volume 17 (2002), pp. 423-430 | DOI | Zbl
[18] The Operator \((x \frac{d}{ dx})^n\) and Its Applications to Series, Math. Mag., Volume 76 (2003), pp. 364-371
[19] k-ary Lyndon words and necklaces arising as rational arguments of Hurwitz-Lerch zeta function and Apostol-Bernoulli polynomials, Mediterr. J. Math., Volume 14 (2017), pp. 1-16 | DOI | Zbl
[20] The Generalized Stirling and Bell Numbers Revisited, J. Integer Seq., Volume 15 (2012), pp. 1-47
[21] A q-analogue of restricted growth functions, Dobinski’s equality, and Charlier polynomials, Trans. Amer. Math. Soc., Volume 245 (1978), pp. 89-118 | DOI
[22] Generalized q-Stirling numbers and their interpolation functions, Axioms, Volume 2 (2013), pp. 10-19 | DOI | Zbl
[23] Congruence properties of q-analogs , Adv. Math., Volume 95 (1992), pp. 127-143 | DOI | Zbl
[24] Combinatorial inequalities and sums involving Bernstein polynomials and basis functions, J. Inequal. Spec. Funct., Volume 8 (2017), pp. 15-24
[25] Generating functions for generalized Stirling type numbers, Array type polynomials, Eulerian type polynomials and their applications, Fixed Point Theory Appl., Volume 2013 (2013), pp. 1-28 | Zbl | DOI
[26] On q-deformed Stirling numbers, Int. J. Math. Comput., Volume 15 (2012), pp. 70-80
[27] q-Bernstein polynomials related to q-Frobenius-Euler polynomials, l-functions, and q-Stirling numbers, Math. Methods Appl. Sci., Volume 35 (2012), pp. 877-884 | Zbl | DOI
[28] A q-analogue of the generalized factorial numbers, J. Korean Math. Soc., Volume 47 (2010), pp. 645-657 | DOI | Zbl
[29] p, q-Stirling numbers and set partition statistics, J. Combin. Theory Ser. A, Volume 56 (1991), pp. 27-46 | Zbl | DOI
[30] A calculus of sequences, Amer. J. Math., Volume 58 (1936), pp. 255-266 | DOI
[31] The q-Stirling numbers, continued fractions and the q-Charlier and q-Laguerre polynomials, J. Comput. Appl. Math., Volume 57 (1995), pp. 413-424 | DOI | Zbl
Cité par Sources :