The $q$-Stirling numbers of the second kind and its applications
Journal of nonlinear sciences and its applications, Tome 11 (2018) no. 8, p. 971-983.

Voir la notice de l'article provenant de la source International Scientific Research Publications

The study of $q$-Stirling numbers of the second kind began with Carlitz [L. Carlitz, Duke Math. J., $\textbf{15}$ (1948), 987--1000] in 1948. Following Carlitz, we derive some identities and relations related to $q$-Stirling numbers of the second kind which appear to be either new or else new ways of expressing older ideas more comprehensively.
DOI : 10.22436/jnsa.011.08.04
Classification : 05A40, 11A25
Keywords: \(q\)-Stirling numbers of the second kind, \(q\)-factorial

Kim, Min-Soo  1 ; Kim, Daeyeoul  2

1 Division of Mathematics, Science, and Computers, Kyungnam University, 7(Woryeong-dong) kyungnamdaehak-ro, Masanhappo-gu, Changwon-si, Gyeongsangnam-do 51767, Republic of Korea
2 Department of Mathematics and Institute of Pure and Applied Mathematics, Chonbuk National University, Jeonju-si 54896, Republic of Korea
@article{JNSA_2018_11_8_a3,
     author = {Kim, Min-Soo  and Kim, Daeyeoul },
     title = {The {\(q\)-Stirling} numbers of the second kind and its applications},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {971-983},
     publisher = {mathdoc},
     volume = {11},
     number = {8},
     year = {2018},
     doi = {10.22436/jnsa.011.08.04},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.08.04/}
}
TY  - JOUR
AU  - Kim, Min-Soo 
AU  - Kim, Daeyeoul 
TI  - The \(q\)-Stirling numbers of the second kind and its applications
JO  - Journal of nonlinear sciences and its applications
PY  - 2018
SP  - 971
EP  - 983
VL  - 11
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.08.04/
DO  - 10.22436/jnsa.011.08.04
LA  - en
ID  - JNSA_2018_11_8_a3
ER  - 
%0 Journal Article
%A Kim, Min-Soo 
%A Kim, Daeyeoul 
%T The \(q\)-Stirling numbers of the second kind and its applications
%J Journal of nonlinear sciences and its applications
%D 2018
%P 971-983
%V 11
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.08.04/
%R 10.22436/jnsa.011.08.04
%G en
%F JNSA_2018_11_8_a3
Kim, Min-Soo ; Kim, Daeyeoul . The \(q\)-Stirling numbers of the second kind and its applications. Journal of nonlinear sciences and its applications, Tome 11 (2018) no. 8, p. 971-983. doi : 10.22436/jnsa.011.08.04. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.08.04/

[1] Boyadzhiev, K. N. Close encounters with the Stirling numbers of the second kind, Math. Mag., Volume 85 (2012), pp. 252-266 | Zbl | DOI

[2] Cai, Y.; Readdy, M. A. q-Stirling numbers: a new view, Adv. Appl. Math., Volume 86 (2017), pp. 50-80 | DOI | Zbl

[3] Carlitz, L. q-Bernoulli numbers and polynomials , Duke Math. J., Volume 15 (1948), pp. 987-1000 | DOI | Zbl

[4] Carlitz, L. On abelian fields, Trans. Amer. Math. Soc., Volume 35 (1933), pp. 122-136 | DOI

[5] Charalambides, C. A. On the q-differences of the generalized q-factorials, J. Statist. Plann. Inference, Volume 54 (1996), pp. 31-43 | DOI | Zbl

[6] J. Cigler Operatormethoden fur q-Identitaten (German) , Monatsh. Math., Volume 88 (1979), pp. 87-105 | DOI

[7] Comtet, L. Advanced Combinatorics , Springer Netherlands, Dordrecht, 1974 | DOI

[8] K. Conrad A q-analogue of Mahler expansions I, Adv. Math., Volume 153 (2000), pp. 185-230 | Zbl | DOI

[9] Corcino, R. B. On p, q-binomial coefficients, Integers, Volume 8 (2008), pp. 1-16

[10] Corcino, C. B.; Corcino, R. B.; Ontolan, J. M.; Perez-Fernandez, C. M.; Cantallopez, E. R. The Hankel transform of q-noncentral Bell numbers, Int. J. Math. Math. Sci., Volume 2015 (2015), pp. 1-10 | Zbl

[11] Corcino, B. R.; Montero, C. B. On p, q-difference operator, J. Korean Math. Soc., Volume 49 (2012), pp. 537-547 | DOI | Zbl

[12] Gould, H. W. Euler’s formula for nth differences of powers, Amer. Math. Monthly, Volume 85 (1978), pp. 450-467 | DOI

[13] Gould, H. W. The q-Stirling numbers of first and second kinds, Duke Math. J., Volume 28 (1961), pp. 281-289 | DOI

[14] J. A. Grunert Uber die Summerung der Reihen von der Form \(A\phi(0), A_1\phi(1)x, A_2\phi(2)x^2, . . . A_n\phi(n)x^n, . . . ,\) wo A eine beliebige constante Gre, \(A_n\) eine beliebige und \(\phi(n)\) eine ganze rationale algebraische Function der positiven ganzen Zahl n bezeichnet, J. Reine Angew. Math., Volume 25 (1843), pp. 240-279 | DOI

[15] Jackson, F. H. On q-functions and a certain difference operator, Trans. Roy. Soc. Edinburgh, Volume 46 (1909), pp. 253-281 | DOI

[16] Jordan, C. Calculus of finite differences, Chelsea, New York, 1950

[17] Kim, M.-S.; Son, J.-W. A note on q-difference operators, Commun. Korean Math. Soc., Volume 17 (2002), pp. 423-430 | DOI | Zbl

[18] P. M. Knopf The Operator \((x \frac{d}{ dx})^n\) and Its Applications to Series, Math. Mag., Volume 76 (2003), pp. 364-371

[19] Kucukoglu, I.; Bayad, A.; Simsek, Y. k-ary Lyndon words and necklaces arising as rational arguments of Hurwitz-Lerch zeta function and Apostol-Bernoulli polynomials, Mediterr. J. Math., Volume 14 (2017), pp. 1-16 | DOI | Zbl

[20] Mansour, T.; Schork, M.; Shattuck, M. The Generalized Stirling and Bell Numbers Revisited, J. Integer Seq., Volume 15 (2012), pp. 1-47

[21] Milne, S. A q-analogue of restricted growth functions, Dobinski’s equality, and Charlier polynomials, Trans. Amer. Math. Soc., Volume 245 (1978), pp. 89-118 | DOI

[22] Ozden, H.; Cangul, I. N.; Simsek, Y. Generalized q-Stirling numbers and their interpolation functions, Axioms, Volume 2 (2013), pp. 10-19 | DOI | Zbl

[23] Sagan, B. E. Congruence properties of q-analogs , Adv. Math., Volume 95 (1992), pp. 127-143 | DOI | Zbl

[24] Simsek, Y. Combinatorial inequalities and sums involving Bernstein polynomials and basis functions, J. Inequal. Spec. Funct., Volume 8 (2017), pp. 15-24

[25] Simsek, Y. Generating functions for generalized Stirling type numbers, Array type polynomials, Eulerian type polynomials and their applications, Fixed Point Theory Appl., Volume 2013 (2013), pp. 1-28 | Zbl | DOI

[26] Simsek, Y. On q-deformed Stirling numbers, Int. J. Math. Comput., Volume 15 (2012), pp. 70-80

[27] Simsek, Y.; Bayad, A.; V. Lokesha q-Bernstein polynomials related to q-Frobenius-Euler polynomials, l-functions, and q-Stirling numbers, Math. Methods Appl. Sci., Volume 35 (2012), pp. 877-884 | Zbl | DOI

[28] Song, S.-Z.; Cheon, G.-S.; Jun, Y.-B.; Beasley, L. B. A q-analogue of the generalized factorial numbers, J. Korean Math. Soc., Volume 47 (2010), pp. 645-657 | DOI | Zbl

[29] Wachs, M.; White, D. p, q-Stirling numbers and set partition statistics, J. Combin. Theory Ser. A, Volume 56 (1991), pp. 27-46 | Zbl | DOI

[30] M. Ward A calculus of sequences, Amer. J. Math., Volume 58 (1936), pp. 255-266 | DOI

[31] Zeng, J. The q-Stirling numbers, continued fractions and the q-Charlier and q-Laguerre polynomials, J. Comput. Appl. Math., Volume 57 (1995), pp. 413-424 | DOI | Zbl

Cité par Sources :