Ulam-Hyers stability of fractional impulsive differential equations
Journal of nonlinear sciences and its applications, Tome 11 (2018) no. 8, p. 953-959.

Voir la notice de l'article provenant de la source International Scientific Research Publications

In this paper, we first prove the existence and uniqueness for a fractional differential equation with time delay and finite impulses on a compact interval. Secondly, Ulam-Hyers stability of the equation is established by Picard operator and abstract Gronwall's inequality.
DOI : 10.22436/jnsa.011.08.02
Classification : 26A33, 45N05
Keywords: Ulam-Hyers stability, fractional order impulsive equation, delay differential equation

Ding, Yali  1

1 School of Mathematics and Statistics, Beijing Institute of Technology, Beijing 100081, P. R. China
@article{JNSA_2018_11_8_a1,
     author = {Ding, Yali },
     title = {Ulam-Hyers stability of fractional impulsive differential equations},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {953-959},
     publisher = {mathdoc},
     volume = {11},
     number = {8},
     year = {2018},
     doi = {10.22436/jnsa.011.08.02},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.08.02/}
}
TY  - JOUR
AU  - Ding, Yali 
TI  - Ulam-Hyers stability of fractional impulsive differential equations
JO  - Journal of nonlinear sciences and its applications
PY  - 2018
SP  - 953
EP  - 959
VL  - 11
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.08.02/
DO  - 10.22436/jnsa.011.08.02
LA  - en
ID  - JNSA_2018_11_8_a1
ER  - 
%0 Journal Article
%A Ding, Yali 
%T Ulam-Hyers stability of fractional impulsive differential equations
%J Journal of nonlinear sciences and its applications
%D 2018
%P 953-959
%V 11
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.08.02/
%R 10.22436/jnsa.011.08.02
%G en
%F JNSA_2018_11_8_a1
Ding, Yali . Ulam-Hyers stability of fractional impulsive differential equations. Journal of nonlinear sciences and its applications, Tome 11 (2018) no. 8, p. 953-959. doi : 10.22436/jnsa.011.08.02. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.08.02/

[1] Abbas, S.; M. Benchohra Uniqueness and Ulam stabilities results for partial fractional differential equations with not instantaneous impulses, Appl. Math. Comput., Volume 257 (2015), pp. 190-198 | DOI | Zbl

[2] Ali, N.; Fatima, B. B.; Shah, K.; Khan, R. A. Hyers-Ulam stability of a class of nonlocal boundary value problem having triple solutions, Int. J. Appl. Comput. Math., Volume 4 (2018), pp. 1-12 | DOI | Zbl

[3] Ali, A.; Samet, B.; Shah, K.; Khan, R. A. Existence and stability of solution to a toppled systems of differential equations of non-integer order, Bound. Value Probl., Volume 2017 (2017), pp. 1-13 | Zbl | DOI

[4] András, S.; A. R. Mészáros Ulam-Hyers stability of dynamic equations on time scales via Picard operators, Appl. Math. Comput., Volume 219 (2013), pp. 4853-4864 | Zbl | DOI

[5] Brzdęk, J.; Eghbali, N. On approximate solutions of some delayed fractional differential equations, Appl. Math. Lett., Volume 54 (2016), pp. 31-35 | Zbl | DOI

[6] Gao, Z.; Yu, X.; Wang, J. Exp-type Ulam-Hyers stability of fractional differential equations with positive constant coefficient, Adv. Difference Equ., Volume 2015 (2015), pp. 1-10 | DOI

[7] Rus, I. A. Remarks on Ulam stability of the operatorial equations, Fixed Point Theory, Volume 10 (2009), pp. 305-320 | Zbl

[8] Shah, K.; Khalil, H.; Khan, R. A. Investigation of positive solution to a coupled system of impulsive boundary value problems for nonlinear fractional order differential equations, Chaos Solitons Fractals, Volume 77 (2015), pp. 240-246 | DOI

[9] Wang, J.-R.; Fečkan, M.; Y. Zhou Ulam’s type stability of impulsive ordinary differential equations , J. Math. Anal. Appl., Volume 395 (2012), pp. 258-264 | Zbl | DOI

[10] Wang, J.-R.; X. Li Ulam-Hyers stability of fractional Langevin equations, Appl. Math. Comput., Volume 258 (2015), pp. 72-83 | Zbl | DOI

[11] Wang, J.-R.; Lv, L.; Zhou, Y. Ulam stability and data dependence for fractional differential equations with Caputo derivative, Electron. J. Qual. Theory Differ. Equ., Volume 2011 (2011), pp. 1-10 | Zbl | DOI

[12] Wang, J.-R.; Shah, K.; Ali, A. Existence and Hyers-Ulam stability of fractional nonlinear impulsive switched coupled evolution equations, Math. Methods Appl. Sci., Volume 41 (2018), pp. 2392-2402 | Zbl | DOI

[13] Wang, C.; Xu, T.-Z.; Hyers-Ulam stability of fractional linear differential equations involving Caputo fractional derivatives, Appl. Math., Volume 60 (2015), pp. 383-393 | DOI | Zbl

[14] Wang, J.-R.; Zhang, Y. Ulam-Hyers-Mittag-Leffler stability of fractional-order delay differential equations, Optimization, Volume 63 (2014), pp. 1181-1190 | DOI | Zbl

[15] Wang, J.-R.; Zhou, Y.; Lin, Z. On a new class of impulsive fractional differential equations, Appl. Math. Comput., Volume 242 (2014), pp. 649-657 | DOI

[16] Yang, X.-J.; Li, C.-D.; Huang, T.-W.; Q.-K. Song Mittag-Leffler stability analysis of nonlinear fractional-order systems with impulses , Appl. Math. Comput., Volume 293 (2017), pp. 416-422 | DOI

[17] Zada, A.; Ali, W.; S. Farina Hyers-Ulam stability of nonlinear differential equations with fractional integrable impulses, Math. Methods Appl. Sci., Volume 40 (2017), pp. 5502-5514 | Zbl | DOI

[18] Zada, A.; Faisal, S.; Y.-J. Li On the Hyers-Ulam stability of first-order impulsive delay differential equations, J. Funct. Spaces, Volume 2016 (2016), pp. 1-6 | Zbl

Cité par Sources :