Voir la notice de l'article provenant de la source International Scientific Research Publications
Qiao, Lei  1
@article{JNSA_2018_11_8_a0, author = {Qiao, Lei }, title = {Cylindrical {Carleman's} formula of subharmonic functions and its application}, journal = {Journal of nonlinear sciences and its applications}, pages = {947-952}, publisher = {mathdoc}, volume = {11}, number = {8}, year = {2018}, doi = {10.22436/jnsa.011.08.01}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.08.01/} }
TY - JOUR AU - Qiao, Lei TI - Cylindrical Carleman's formula of subharmonic functions and its application JO - Journal of nonlinear sciences and its applications PY - 2018 SP - 947 EP - 952 VL - 11 IS - 8 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.08.01/ DO - 10.22436/jnsa.011.08.01 LA - en ID - JNSA_2018_11_8_a0 ER -
%0 Journal Article %A Qiao, Lei %T Cylindrical Carleman's formula of subharmonic functions and its application %J Journal of nonlinear sciences and its applications %D 2018 %P 947-952 %V 11 %N 8 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.08.01/ %R 10.22436/jnsa.011.08.01 %G en %F JNSA_2018_11_8_a0
Qiao, Lei . Cylindrical Carleman's formula of subharmonic functions and its application. Journal of nonlinear sciences and its applications, Tome 11 (2018) no. 8, p. 947-952. doi : 10.22436/jnsa.011.08.01. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.08.01/
[1] A Nevanlinna theorem for superharmonic functions in half-spaces, with applications, J. London Math. Soc., Volume 23 (1981), pp. 137-157 | DOI
[2] Elliptic partial differential equations of second order, Grundlehren der Mathematischen Wissenschaften, Springer-Verlag, Berlin-New York, 1977 | DOI
[3] Harmonic majorizations in half-balls and half-spaces, Proc. London Math. Soc., Volume 21 (1970), pp. 614-636 | DOI
[4] Entire and subharmonic functions, Adv. Soviet Math., Amer. Math. Soc., Providence, RI, 1992
[5] Harmonic functions in a cylinder which vanish on the boundary, Japan. J. Math., Volume 22 (1996), pp. 241-255 | DOI
[6] Harmonic functions in a cylinder with normal derivatives vanishing on the boundary, Ann. Polon. Math., Volume 74 (2000), pp. 229-235 | DOI
[7] On a covering property of minimally thin sets at infinity in a cylinder, Math. Montisnigri, Volume 20/21 (2007/08), pp. 35-54
[8] Asymptotic behavior of Poisson integrals in a cylinder and its application to the representation of harmonic functions, Bull. Sci. Math., Volume 144 (2018), pp. 39-54 | DOI
[9] Subharmonic functions of finite order in a cone. III., Functions of completely regular growth, J. Math. Sci., Volume 77 (1995), pp. 2929-2940
[10] Functions of completely regular growth , Kluwer Academic Publishers Group , Dordrecht, 1992 | DOI
[11] Spectral theory of differential operators, Itogi Nauki i Tekhniki, Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., Moscow, 1989
[12] Harmonic majorization of a subharmonic function on a cone or on a cylinder , Pacific J. Math., Volume 148 (1991), pp. 369-395 | Zbl
Cité par Sources :