On the oscillation for $n$th-order nonlinear neutral delay dynamic equations on time scales
Journal of nonlinear sciences and its applications, Tome 11 (2018) no. 7, p. 937-946.

Voir la notice de l'article provenant de la source International Scientific Research Publications

In this paper, we investigate the solution's oscillation of $n$th-order nonlinear dynamic equation
$[a_{n}(t)((a_{n-1}(t)(\cdots(a_{1}(t)(x(t)-p(t)x(\tau(t)))^{\Delta})^{\alpha_{1}})^{\Delta} \cdots)^{\Delta})^{\alpha_{n}}]^{\Delta}+f(t,x(\delta(t)))=0$
on a time scale $\mathbb{T}$ with $n\geq 2$. We give some conditions for the oscillation of the above equation.
DOI : 10.22436/jnsa.011.07.06
Classification : 34N05, 34K11, 39A21
Keywords: Oscillation, dynamic equation, time scale

Zhou, Yaru  1 ; Chen, Zhanhe  1 ; Sun, Taixiang  2

1 College of Mathematics and Information Science, Guangxi University, Nanning, Guangxi, 530004, P. R. China
2 Department of Mathematics, Guangxi College of Finance and Economics, Nanning, Guangxi 530003, P. R. China
@article{JNSA_2018_11_7_a5,
     author = {Zhou, Yaru  and Chen, Zhanhe  and Sun, Taixiang },
     title = {On the oscillation for \(n\)th-order nonlinear neutral delay dynamic equations on time scales},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {937-946},
     publisher = {mathdoc},
     volume = {11},
     number = {7},
     year = {2018},
     doi = {10.22436/jnsa.011.07.06},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.07.06/}
}
TY  - JOUR
AU  - Zhou, Yaru 
AU  - Chen, Zhanhe 
AU  - Sun, Taixiang 
TI  - On the oscillation for \(n\)th-order nonlinear neutral delay dynamic equations on time scales
JO  - Journal of nonlinear sciences and its applications
PY  - 2018
SP  - 937
EP  - 946
VL  - 11
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.07.06/
DO  - 10.22436/jnsa.011.07.06
LA  - en
ID  - JNSA_2018_11_7_a5
ER  - 
%0 Journal Article
%A Zhou, Yaru 
%A Chen, Zhanhe 
%A Sun, Taixiang 
%T On the oscillation for \(n\)th-order nonlinear neutral delay dynamic equations on time scales
%J Journal of nonlinear sciences and its applications
%D 2018
%P 937-946
%V 11
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.07.06/
%R 10.22436/jnsa.011.07.06
%G en
%F JNSA_2018_11_7_a5
Zhou, Yaru ; Chen, Zhanhe ; Sun, Taixiang . On the oscillation for \(n\)th-order nonlinear neutral delay dynamic equations on time scales. Journal of nonlinear sciences and its applications, Tome 11 (2018) no. 7, p. 937-946. doi : 10.22436/jnsa.011.07.06. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.07.06/

[1] Baoguo, J.; Erbe, L.; Peterson, A. Asymptotic behavior of nth-order sublinear dynamic equations on time scales, Common. Appl. Anal., Volume 15 (2011), pp. 183-194

[2] Erbe, L.; Jia, B.; A. Peterson Oscillation of nth-order superlinear dynamic equations on time scales, Rocky Mountain J. Math., Volume 41 (2011), pp. 471-491 | DOI | Zbl

[3] Erbe, L.; Peterson, A.; S. H. Saker Oscillation criteria for second-order nonlinear delay dynamic equations, J. Math. Anal. Appl., Volume 333 (2007), pp. 505-522 | DOI

[4] Li, T.; Han, Z.; Sun, S.; Zhao, Y. Oscillation results for third order nonlinear delay dynamic equations on time scales, Bull. Malays. Math. Sci. Soc., Volume 34 (2011), pp. 639-648

[5] Shi, Y.; Han, Z.; Sun, Y. Oscillation criteria for a generalized Emden-Fowler dynamic equations on time scales, Adv. Difference Equ., Volume 2016 (2016), pp. 1-12 | DOI

[6] Sun, Y.; Han, Z.; G. Zhang Oscillation of second-order nonlinear neutral delay dynamic equations on time scales, J. Appl. Math. Comput., Volume 30 (2009), pp. 459-468

[7] Sun, Y.; Han, Z.; Sun, Y.; Pan, Y. Oscillation theorems for certain third-order nonlinear delay dynamic equations on time scales, Electron J. Qual. Theory Differ. Equ., Volume 2011 (2011), pp. 1-14 | Zbl | DOI

[8] Sun, T.; He, Q.; Xi, H.; W. Yu Oscillation for higher order dynamic equations on time scales, Abstr. Appl. Anal., Volume 2013 (2013), pp. 1-8

[9] Sun, T.; Yu, W.; Xi, H. Oscillation behavior and comparison for higher order nonlinear dynamic equations on time scales, J. Appl. Math. Info., Volume 30 (2012), pp. 289-304

[10] Zhang, C.; Agarwal, R. P.; Bohner, M.; T. Li Oscillation of fourth-order delay dynamic equations, Sci. China Math., Volume 58 (2015), pp. 143-160 | DOI

[11] Zhang, S.-Y.; Wang, Q.-R.; Kong, Q. Asymptotic and oscillation of nth-order nonlinear dynamic equations on time scales, Appl. Math. comput., Volume 275 (2016), pp. 324-334 | DOI

Cité par Sources :