Voir la notice de l'article provenant de la source International Scientific Research Publications
Wu, Yujing  1 ; Shi, Luoyi  2 ; Chen, Rudong  2
@article{JNSA_2018_11_7_a4, author = {Wu, Yujing and Shi, Luoyi and Chen, Rudong }, title = {Projection algorithms with dynamic stepsize for constrained composite minimization}, journal = {Journal of nonlinear sciences and its applications}, pages = {927-936}, publisher = {mathdoc}, volume = {11}, number = {7}, year = {2018}, doi = {10.22436/jnsa.011.07.05}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.07.05/} }
TY - JOUR AU - Wu, Yujing AU - Shi, Luoyi AU - Chen, Rudong TI - Projection algorithms with dynamic stepsize for constrained composite minimization JO - Journal of nonlinear sciences and its applications PY - 2018 SP - 927 EP - 936 VL - 11 IS - 7 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.07.05/ DO - 10.22436/jnsa.011.07.05 LA - en ID - JNSA_2018_11_7_a4 ER -
%0 Journal Article %A Wu, Yujing %A Shi, Luoyi %A Chen, Rudong %T Projection algorithms with dynamic stepsize for constrained composite minimization %J Journal of nonlinear sciences and its applications %D 2018 %P 927-936 %V 11 %N 7 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.07.05/ %R 10.22436/jnsa.011.07.05 %G en %F JNSA_2018_11_7_a4
Wu, Yujing ; Shi, Luoyi ; Chen, Rudong . Projection algorithms with dynamic stepsize for constrained composite minimization. Journal of nonlinear sciences and its applications, Tome 11 (2018) no. 7, p. 927-936. doi : 10.22436/jnsa.011.07.05. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.07.05/
[1] On projection algorithms for solving convex feasibility problems, SIAM Rev., Volume 38 (1996), pp. 367-426 | DOI
[2] Nonlinear Programming, Athena Scientific, Belmont, MA, 1995
[3] Incremental Gradient, Subgradient, and Proximal Methods for Convex Optimization: A Survey, MIT Press, Cambridge, 2011
[4] Incremental aggregated proximal and augmented Lagrangian algorithms, arXiv preprint, Volume 2015 (2015), pp. 1-38
[5] Neuro-Dynamic Programming, Athena Scientific, Belmont, MA, 1996
[6] Hilbertian convex feasibility problem: convergence of projection methods, Appl. Math. Optim., Volume 35 (1997), pp. 311-330 | Zbl | DOI
[7] Topics in Metric Fixed Point Theory, Cambridge University Press, Cambridge, 1990 | DOI
[8] Uniform convexity, hyperbolic geometry, and nonexpansive mappings, Marcel Dekker, Inc., New York, 1984
[9] Convergence of a simple subgradient level method, Math. Program., Volume 85 (1999), pp. 207-211 | DOI | Zbl
[10] The elements of statistical learning, Data mining, inference, and prediction, Second edition, Springer, New York, 2009 | DOI
[11] Parallel subgradient methods for convex optimization, Inherently parallel algorithms in feasibility and optimization and their applications (Haifa, 2000), 335–344, Stud. Comput. Math., North-Holland, Amsterdam, 2001 | DOI
[12] Convergence of approximate and incremental subgradient methods for convex optimization, SIAM J. Optim., Volume 14 (2004), pp. 807-840 | DOI | Zbl
[13] On the convergence of the LMS algorithm with adaptive learning rate for linear feedforward networks, Neural Computation, Volume 3 (1991), pp. 226-245 | DOI
[14] Incremental subgradient methods for nondifferentiable optimization, SIAM J. Option, Volume 12 (2001), pp. 109-138 | DOI
[15] Distributed Asynchronous Incremental Subgradient Methods , Stud. Comput. Math., Volume 8 (2001), pp. 381-407 | Zbl | DOI
[16] Minimization of unsmooth functionals, USSR Comput. Math. & Math. Phys., Volume 9 (1969), pp. 509-521 | Zbl | DOI
[17] Introduction to Optimization, Translated from the Russian. With a foreword by Dimitri P. Bertsekas. Translations Series in Mathematics and Engineering, Optimization Software, Inc., Publications Division, New York, 1987
[18] An iterative regularization method for the solution of the split feasibility problem in Banach spaces, Inverse Problems, Volume 2008 (2008), pp. 1-20 | DOI | Zbl
[19] A new algorithm for constrained composite minimization, J. Nonlinear Var. Anal., Volume 1 (2017), pp. 253-264
[20] Optimization for machine learning , MIT Press, Cambridge, Massachusetts, 2011
[21] Averaged mappings and the gradient-projection algorithm, J. Optim. Theory Appl., Volume 150 (2011), pp. 360-378 | DOI
[22] Projection algorithms for composite minimization, Carpathian J. Math., Volume 33 (2017), pp. 389-397
[23] Surrogate gradient algorithm for Lagrangian relaxation, J. Optim. Theory Appl., Volume 100 (1999), pp. 699-712 | Zbl | DOI
Cité par Sources :