Voir la notice de l'article provenant de la source International Scientific Research Publications
Chang, Shih-Sen  1 ; Salahuddin, S. 2 ; Wen, Ching-Feng  3 ; Wang, Xiong Rui  4
@article{JNSA_2018_11_7_a3, author = {Chang, Shih-Sen and Salahuddin, S. and Wen, Ching-Feng and Wang, Xiong Rui }, title = {On the existence problem of solutions to a class of fuzzy mixed exponential vector variational inequalities}, journal = {Journal of nonlinear sciences and its applications}, pages = {916-926}, publisher = {mathdoc}, volume = {11}, number = {7}, year = {2018}, doi = {10.22436/jnsa.011.07.04}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.07.04/} }
TY - JOUR AU - Chang, Shih-Sen AU - Salahuddin, S. AU - Wen, Ching-Feng AU - Wang, Xiong Rui TI - On the existence problem of solutions to a class of fuzzy mixed exponential vector variational inequalities JO - Journal of nonlinear sciences and its applications PY - 2018 SP - 916 EP - 926 VL - 11 IS - 7 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.07.04/ DO - 10.22436/jnsa.011.07.04 LA - en ID - JNSA_2018_11_7_a3 ER -
%0 Journal Article %A Chang, Shih-Sen %A Salahuddin, S. %A Wen, Ching-Feng %A Wang, Xiong Rui %T On the existence problem of solutions to a class of fuzzy mixed exponential vector variational inequalities %J Journal of nonlinear sciences and its applications %D 2018 %P 916-926 %V 11 %N 7 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.07.04/ %R 10.22436/jnsa.011.07.04 %G en %F JNSA_2018_11_7_a3
Chang, Shih-Sen ; Salahuddin, S.; Wen, Ching-Feng ; Wang, Xiong Rui . On the existence problem of solutions to a class of fuzzy mixed exponential vector variational inequalities. Journal of nonlinear sciences and its applications, Tome 11 (2018) no. 7, p. 916-926. doi : 10.22436/jnsa.011.07.04. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.07.04/
[1] A fuzzy extension of generalized implicit vector variational like inequalities, Positivity, Volume 11 (2007), pp. 477-484 | Zbl
[2] Existence of solution for generalized implicit vector variational like inequalities, Nonlinear Anal., Volume 67 (2007), pp. 430-441 | DOI
[3] Fuzzy generalized variational like inequality problems in topological vector spaces, J. Fuzzy Set Valued Anal., Volume 2013 (2013), pp. 1-5 | Zbl | DOI
[4] Weakly set valued generalized vector variational inequalities, J. Comput. Anal. Appl., Volume 15 (2013), pp. 622-632 | Zbl
[5] Existence conditions in symmetric multivalued vector quasiequilibrium problems, Control Cybernet., Volume 36 (2007), pp. 519-530 | Zbl
[6] Zur invarianz des n-dimensional gebietes, Math. Ann., Volume 71 (1912), pp. 305-313 | EuDML
[7] On generalized variational-like inequalities with generalized monotone multivalued mappings, Appl. Math. Lett., Volume 22 (2009), pp. 428-434 | Zbl | DOI
[8] Fuzzy topological spaces, J. Math. Anal. Appl., Volume 24 (1968), pp. 182-190 | DOI
[9] Existence of vector quasi variational like inequalities for fuzzy mappings, Fuzzy Sets and Systems, Volume 233 (2013), pp. 89-95 | DOI | Zbl
[10] Generalized vector variational like inequalities in fuzzy environment, Fuzzy Sets and System, Volume 265 (2015), pp. 110-120 | Zbl | DOI
[11] On variational inequalities for fuzzy mappings, Fuzzy Sets and Systems, Volume 32 (1989), pp. 359-367 | DOI
[12] Existence of solutions for a vector variational inequalities: An extension of Hartman-Stampacchia theorems, J. Optim. Theory Appl., Volume 74 (1992), pp. 445-456 | DOI
[13] Vector variational inequality and vector optimizations problem, Toward Interactive and Intelligent Decision Support Systems, Lecture Notes in Economics and Mathematical Systems, Springer, Berlin, Heidelberg, 1987 | DOI
[14] A fuzzy extension of generalized vector version of Minty lemma and applications, J. Fuzzy Maths., Volume 15 (2007), pp. 449-458 | Zbl
[15] Fuzzy generalized mixed vector quasi variational like inequalities, J. Emerging Trends Comput. Information Sci., Volume 4 (2013), pp. 881-887
[16] Fuzzy generalized vector variational inequalities and complementarity problems, Nonlinear Funct. Anal. Appl., Volume 13 (2008), pp. 253-263 | Zbl
[17] A generalization of tychonoff’s fixed point theorem, Math. Ann., Volume 142 (1961), pp. 305-310 | Zbl
[18] Variational-like inequalities with generalized monotone mappings in Banach spaces, J. Optim. Theory Appl., Volume 118 (2003), pp. 327-338 | DOI
[19] Theorems of the Alternative, Quadratic Programs, and Complementarity Problems, Variational Inequalities and Complementarity Problems, Edited by R. W. Cottle, F. Giannessi, and J. L. Lions, John Wiley and Sons, New York, 1980 | Zbl
[20] Some generalized vector variational inequalities and complementarity problems for multivalued mappings, Appl. Math. Lett., Volume 16 (2003), pp. 1003-1010 | DOI | Zbl
[21] Exponential type vector variational-like inequalities and vector optimization problems with exponential type invexities, J. Appl. Math. Comput., Volume 45 (2014), pp. 87-97 | Zbl | DOI
[22] Generic stability and essential components of generalized KKM points and applications, J. Optim. Theory Appl., Volume 148 (2011), pp. 488-504 | DOI | Zbl
[23] A hemivariational-like inequality with applications, J. Nonlinear Convex Anal., Volume 16 (2015), pp. 141-150 | Zbl
[24] Minty lemma for inverted vector variational inequalities, Optimization, Volume 66 (2017), pp. 351-359 | Zbl | DOI
[25] Generalized vector variational inequalities, J. Optim. Theory Appl., Volume 92 (1997), pp. 117-125 | DOI
[26] Multi-valued contraction mappings, Pacific J. Math., Volume 30 (1969), pp. 475-488 | Zbl
[27] Existence theorem for fuzzy mixed vector F-variational inequalities, Adv. Nonlinear Var. Inequal., Volume 16 (2013), pp. 53-59 | Zbl
[28] Fuzzy general nonlinear ordered random variational inequalities in ordered Banach spaces , East Asian Math. J., Volume 32 (2016), pp. 685-700 | DOI | Zbl
[29] A common fixed point theorem for fuzzy mappings, Trans. Math. Prog. Appls., Volume 1 (2013), pp. 59-68
[30] On vector variational like inequalities, Far East J. Math. Sci., Special Volume, Part III (1998), pp. 319-329
[31] Vector variational-like inequalities with relaxed \(\eta-\alpha\)-Pseudomonotone mappings in Banach spaces, J. Math. Inequal., Volume 1 (2007), pp. 281-290 | Zbl
[32] Fuzzy sets, Information Control, Volume 8 (1964), pp. 338-353
Cité par Sources :