On the existence problem of solutions to a class of fuzzy mixed exponential vector variational inequalities
Journal of nonlinear sciences and its applications, Tome 11 (2018) no. 7, p. 916-926.

Voir la notice de l'article provenant de la source International Scientific Research Publications

In this research article, we deal with a new kind of mixed exponential fuzzy vector variational inequalities in ordered Euclidean spaces. By using KKM-technique and Nadler's fixed point theorem, we prove some existence theorems of solutions to mixed exponential vector variational inequality problems in fuzzy environment.
DOI : 10.22436/jnsa.011.07.04
Classification : 47H09, 47J20
Keywords: Mixed exponential vector variational inequality problems, fuzzy mappings, fuzzy upper and lower semicontinuous mappings, \(\alpha_g\)-relaxed exponentially \((\gamma,\eta)\)-monotone mapping, KKM-mappings, Nadler's fixed points theorem, ordered Euclidean spaces

Chang, Shih-Sen  1 ; Salahuddin, S. 2 ; Wen, Ching-Feng  3 ; Wang, Xiong Rui  4

1 Center for General Education, China Medical University, Taichung 40402, Taiwan
2 Department of Mathematics, Jazan University, Jazan, Kingdom of Saudi Arabia
3 Center for Fundamental Science; and Research Center for Nonlinear Analysis and Optimization, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
4 Department of Mathematics, Yibin University, Yibin, Sichuan 644007, China
@article{JNSA_2018_11_7_a3,
     author = {Chang, Shih-Sen  and Salahuddin, S. and Wen, Ching-Feng  and Wang, Xiong Rui },
     title = {On the existence problem of solutions   to a class of fuzzy mixed exponential   vector variational inequalities},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {916-926},
     publisher = {mathdoc},
     volume = {11},
     number = {7},
     year = {2018},
     doi = {10.22436/jnsa.011.07.04},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.07.04/}
}
TY  - JOUR
AU  - Chang, Shih-Sen 
AU  - Salahuddin, S.
AU  - Wen, Ching-Feng 
AU  - Wang, Xiong Rui 
TI  - On the existence problem of solutions   to a class of fuzzy mixed exponential   vector variational inequalities
JO  - Journal of nonlinear sciences and its applications
PY  - 2018
SP  - 916
EP  - 926
VL  - 11
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.07.04/
DO  - 10.22436/jnsa.011.07.04
LA  - en
ID  - JNSA_2018_11_7_a3
ER  - 
%0 Journal Article
%A Chang, Shih-Sen 
%A Salahuddin, S.
%A Wen, Ching-Feng 
%A Wang, Xiong Rui 
%T On the existence problem of solutions   to a class of fuzzy mixed exponential   vector variational inequalities
%J Journal of nonlinear sciences and its applications
%D 2018
%P 916-926
%V 11
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.07.04/
%R 10.22436/jnsa.011.07.04
%G en
%F JNSA_2018_11_7_a3
Chang, Shih-Sen ; Salahuddin, S.; Wen, Ching-Feng ; Wang, Xiong Rui . On the existence problem of solutions   to a class of fuzzy mixed exponential   vector variational inequalities. Journal of nonlinear sciences and its applications, Tome 11 (2018) no. 7, p. 916-926. doi : 10.22436/jnsa.011.07.04. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.07.04/

[1] Ahmad, M. K.; Salahuddin, S. A fuzzy extension of generalized implicit vector variational like inequalities, Positivity, Volume 11 (2007), pp. 477-484 | Zbl

[2] Ahmad, M. K.; S. Salahuddin Existence of solution for generalized implicit vector variational like inequalities, Nonlinear Anal., Volume 67 (2007), pp. 430-441 | DOI

[3] Ahmad, M. K.; Salahuddin, S. Fuzzy generalized variational like inequality problems in topological vector spaces, J. Fuzzy Set Valued Anal., Volume 2013 (2013), pp. 1-5 | Zbl | DOI

[4] Anastassiou, G. A.; Salahuddin, S. Weakly set valued generalized vector variational inequalities, J. Comput. Anal. Appl., Volume 15 (2013), pp. 622-632 | Zbl

[5] Anh, L. Q.; Khanh, P. Q. Existence conditions in symmetric multivalued vector quasiequilibrium problems, Control Cybernet., Volume 36 (2007), pp. 519-530 | Zbl

[6] Brouwer, L. E. J. Zur invarianz des n-dimensional gebietes, Math. Ann., Volume 71 (1912), pp. 305-313 | EuDML

[7] Ceng, L. C.; J. C. Yao On generalized variational-like inequalities with generalized monotone multivalued mappings, Appl. Math. Lett., Volume 22 (2009), pp. 428-434 | Zbl | DOI

[8] Chang, C. L. Fuzzy topological spaces, J. Math. Anal. Appl., Volume 24 (1968), pp. 182-190 | DOI

[9] Chang, S. S.; S. Salahuddin Existence of vector quasi variational like inequalities for fuzzy mappings, Fuzzy Sets and Systems, Volume 233 (2013), pp. 89-95 | DOI | Zbl

[10] Chang, S. S.; Salahuddin, S.; Ahmad, M. K.; Wang, X. R. Generalized vector variational like inequalities in fuzzy environment, Fuzzy Sets and System, Volume 265 (2015), pp. 110-120 | Zbl | DOI

[11] Chang, S.-S.; Zhu, Y.-G. On variational inequalities for fuzzy mappings, Fuzzy Sets and Systems, Volume 32 (1989), pp. 359-367 | DOI

[12] Chen, G. Y. Existence of solutions for a vector variational inequalities: An extension of Hartman-Stampacchia theorems, J. Optim. Theory Appl., Volume 74 (1992), pp. 445-456 | DOI

[13] Chen, G.-Y.; Cheng, G.-M. Vector variational inequality and vector optimizations problem, Toward Interactive and Intelligent Decision Support Systems, Lecture Notes in Economics and Mathematical Systems, Springer, Berlin, Heidelberg, 1987 | DOI

[14] Cho, Y. J.; Salahuddin, S.; Ahmad, M. K. A fuzzy extension of generalized vector version of Minty lemma and applications, J. Fuzzy Maths., Volume 15 (2007), pp. 449-458 | Zbl

[15] Ding, X. P.; Salahuddin, S. Fuzzy generalized mixed vector quasi variational like inequalities, J. Emerging Trends Comput. Information Sci., Volume 4 (2013), pp. 881-887

[16] Ding, X. P.; Salahuddin, S.; Ahmad, M. K. Fuzzy generalized vector variational inequalities and complementarity problems, Nonlinear Funct. Anal. Appl., Volume 13 (2008), pp. 253-263 | Zbl

[17] Fan, K. A generalization of tychonoff’s fixed point theorem, Math. Ann., Volume 142 (1961), pp. 305-310 | Zbl

[18] Fang, Y. P.; Huang, N. J. Variational-like inequalities with generalized monotone mappings in Banach spaces, J. Optim. Theory Appl., Volume 118 (2003), pp. 327-338 | DOI

[19] F. Giannessi Theorems of the Alternative, Quadratic Programs, and Complementarity Problems, Variational Inequalities and Complementarity Problems, Edited by R. W. Cottle, F. Giannessi, and J. L. Lions, John Wiley and Sons, New York, 1980 | Zbl

[20] Huang, N.-J.; Gao, C.-J. Some generalized vector variational inequalities and complementarity problems for multivalued mappings, Appl. Math. Lett., Volume 16 (2003), pp. 1003-1010 | DOI | Zbl

[21] Jayswal, A.; Choudhury, S.; R. U. Verma Exponential type vector variational-like inequalities and vector optimization problems with exponential type invexities, J. Appl. Math. Comput., Volume 45 (2014), pp. 87-97 | Zbl | DOI

[22] Khanh, P. Q.; N. H. Quan Generic stability and essential components of generalized KKM points and applications, J. Optim. Theory Appl., Volume 148 (2011), pp. 488-504 | DOI | Zbl

[23] Lee, B. S.; Salahuddin, S. A hemivariational-like inequality with applications, J. Nonlinear Convex Anal., Volume 16 (2015), pp. 141-150 | Zbl

[24] Lee, B. S.; S. Salahuddin Minty lemma for inverted vector variational inequalities, Optimization, Volume 66 (2017), pp. 351-359 | Zbl | DOI

[25] Lin, K. L.; Yang, D.-P.; Yao, J. C. Generalized vector variational inequalities, J. Optim. Theory Appl., Volume 92 (1997), pp. 117-125 | DOI

[26] S. B. J. Nadler Multi-valued contraction mappings, Pacific J. Math., Volume 30 (1969), pp. 475-488 | Zbl

[27] Salahuddin, S.; Ahmad, M. K.; R. U. Verma Existence theorem for fuzzy mixed vector F-variational inequalities, Adv. Nonlinear Var. Inequal., Volume 16 (2013), pp. 53-59 | Zbl

[28] Salahuddin, S.; Lee, B. S. Fuzzy general nonlinear ordered random variational inequalities in ordered Banach spaces , East Asian Math. J., Volume 32 (2016), pp. 685-700 | DOI | Zbl

[29] Salahuddin, S.; Verma, R. U. A common fixed point theorem for fuzzy mappings, Trans. Math. Prog. Appls., Volume 1 (2013), pp. 59-68

[30] Siddiqi, A. H.; Khan, M. F.; Salahuddin, S. On vector variational like inequalities, Far East J. Math. Sci., Special Volume, Part III (1998), pp. 319-329

[31] Wu, K.-Q.; Huang, N.-J. Vector variational-like inequalities with relaxed \(\eta-\alpha\)-Pseudomonotone mappings in Banach spaces, J. Math. Inequal., Volume 1 (2007), pp. 281-290 | Zbl

[32] Zadeh, L. A. Fuzzy sets, Information Control, Volume 8 (1964), pp. 338-353

Cité par Sources :