Voir la notice de l'article provenant de la source International Scientific Research Publications
$\mu(y)f(x\sigma(y)z_0)\pm f(xyz_0) =2f(x)f(y), \;x,y\in S,\quad \mu(y)f( \sigma(y)xz_0)\pm f(xyz_0) = 2f(x)f(y), \;x,y\in S,$ |
Keltouma, Belfakih  1 ; Elhoucien, Elqorachi  1 ; Rassias, Themistocles M.  2 ; Ahmed, Redouani  3
@article{JNSA_2018_11_7_a2, author = {Keltouma, Belfakih and Elhoucien, Elqorachi and Rassias, Themistocles M. and Ahmed, Redouani }, title = {Superstability of {Kannappan's} and {Van} vleck's functional equations}, journal = {Journal of nonlinear sciences and its applications}, pages = {894-915}, publisher = {mathdoc}, volume = {11}, number = {7}, year = {2018}, doi = {10.22436/jnsa.011.07.03}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.07.03/} }
TY - JOUR AU - Keltouma, Belfakih AU - Elhoucien, Elqorachi AU - Rassias, Themistocles M. AU - Ahmed, Redouani TI - Superstability of Kannappan's and Van vleck's functional equations JO - Journal of nonlinear sciences and its applications PY - 2018 SP - 894 EP - 915 VL - 11 IS - 7 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.07.03/ DO - 10.22436/jnsa.011.07.03 LA - en ID - JNSA_2018_11_7_a2 ER -
%0 Journal Article %A Keltouma, Belfakih %A Elhoucien, Elqorachi %A Rassias, Themistocles M. %A Ahmed, Redouani %T Superstability of Kannappan's and Van vleck's functional equations %J Journal of nonlinear sciences and its applications %D 2018 %P 894-915 %V 11 %N 7 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.07.03/ %R 10.22436/jnsa.011.07.03 %G en %F JNSA_2018_11_7_a2
Keltouma, Belfakih ; Elhoucien, Elqorachi ; Rassias, Themistocles M. ; Ahmed, Redouani . Superstability of Kannappan's and Van vleck's functional equations. Journal of nonlinear sciences and its applications, Tome 11 (2018) no. 7, p. 894-915. doi : 10.22436/jnsa.011.07.03. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.07.03/
[1] The stability of the cosine equation , Proc. Amer. Math. Soc., Volume 80 (1980), pp. 411-416 | DOI
[2] The stability of the equation \(f(x + y) = f(x)f(y)\), Proc. Amer. Math. Soc., Volume 74 (1979), pp. 242-246 | DOI
[3] An extension of Van Vleck’s functional equation for the sine, Acta Math. Hungarica, Volume 150 (2016), pp. 258-267 | Zbl
[4] Stability of a generalization of Wilson’s equation, Aequationes Math., Volume 90 (2016), pp. 517-525 | DOI | Zbl
[5] The superstability of d’Alembert’s functional equation on the Heisenberg group, Applied Math. Letters, Volume 23 (2010), pp. 105-109 | Zbl | DOI
[6] D’Alembert’s functional equation on topological groups, Aequationes Math., Volume 76 (2008), pp. 33-53 | DOI
[7] D’Alembert’s functional equation on topological monoids , Publ. Math. Debrecen, Volume 75 (2009), pp. 41-66 | Zbl
[8] d’Alembert’s other functional equation on monoids with an involution, Aequationes Math., Volume 89 (2015), pp. 187-206 | DOI | Zbl
[9] On Wilson’s functional equations, Aequationes Math., Volume 89 (2015), pp. 339-354 | DOI
[10] On generalized d’Alembert and Wilson functional equations , Aequationes Math., Volume 66 (2003), pp. 241-256 | DOI
[11] The superstability of the generalized d’Alembert functional equation, Georgian Math. J., Volume 10 (2003), pp. 503-508
[12] An extensions of Kannappan’s and Van Vleck’s functional equations on semigroups, Manuscript (2016)
[13] Solutions and stability of generalized Kannappan’s and Van Vleck’s functional equation, Annales Math. Silesianae, Volume 2017 (2017), pp. 1-32 | DOI
[14] Solutions and stability of variant of Wilson’s functional equation, arXiv, Volume 2018 (2018), pp. 1-19
[15] Solutions and stability of a variant of Van Vleck’s and d’Alembert’s functional equations, Nonlinear Anal. Appl., Volume 7 (2016), pp. 279-301 | Zbl
[16] Hyers-Ulam stability of functional equations in several variables, Aequationes Math., Volume 50 (1995), pp. 143-190 | DOI
[17] Superstability is not natural, Rocznik Nauk.-Dydakt. Prace Mat., Volume 159 (1993), pp. 109-123 | Zbl
[18] A functional equation for the cosine, Canad. Math. Bull., Volume 2 (1968), pp. 495-498
[19] Functional Equations and Inequalities with Applications, Springer, New York, 2009 | DOI
[20] On the stability of the Pexiderized trigonometric functional equation, Appl. Math. Comput., Volume 203 (2008), pp. 99-105 | DOI
[21] On two functional equations with involution on groups related to sine and cosine functions , Aequationes Math., Volume 89 (2015), pp. 1251-1263 | DOI | Zbl
[22] Functional Equations in Mathematical Analysis, Springer, New York, 2012 | DOI
[23] The superstability of d’Alembert’s functional equation on step 2-nilpotent groups, Aequationes Math., Volume 74 (2007), pp. 226-241 | Zbl
[24] Functional Equations on Groups, World Scientific Publishing Co, New Jersey, 2013
[25] A variant of d’Alembert’s functional equation, Aequationes Math., Volume 89 (2015), pp. 657-662 | DOI
[26] Van Vleck’s functional equation for the sine, Aequationes Math., Volume 90 (2016), pp. 25-34 | DOI
[27] Kannappan’s functional equation on semigroups with involution, Semigroup Forum, Volume 94 (2017), pp. 17-30 | DOI | Zbl
[28] On a stability theorem, C. R. Math. Acad. Sci. Canada, Volume 3 (1981), pp. 253-255
[29] On a theorem of Baker, Lawrence and Zorzitto, Proc. Amer. Math. Soc., Volume 84 (1982), pp. 95-96 | DOI | Zbl
[30] The stability of the sine and cosine functional equations, Proc. Amer. Math. Soc., Volume 110 (1990), pp. 109-115 | DOI
[31] A functional equation for the sine, Ann. of Math., Volume 11 (1910), pp. 161-165 | DOI
[32] A functional equation for the sine, Ann. of Math., Volume 13 (1911/12), pp. 1-154 | DOI
Cité par Sources :