Superstability of Kannappan's and Van vleck's functional equations
Journal of nonlinear sciences and its applications, Tome 11 (2018) no. 7, p. 894-915.

Voir la notice de l'article provenant de la source International Scientific Research Publications

In this paper, we prove the superstability theorems of the functional equations
$\mu(y)f(x\sigma(y)z_0)\pm f(xyz_0) =2f(x)f(y), \;x,y\in S,\quad \mu(y)f( \sigma(y)xz_0)\pm f(xyz_0) = 2f(x)f(y), \;x,y\in S,$
where $S$ is a semigroup, $\sigma$ is an involutive morphism of $S$, and $\mu:$ $S\longrightarrow \mathbb{C}$ is a bounded multiplicative function such that $\mu(x\sigma(x))=1$ for all $x \in S$, and $z_{0}$ is in the center of $S$.
DOI : 10.22436/jnsa.011.07.03
Classification : 39B32, 39B82
Keywords: Hyers-Ulam stability, semigroup, d'Alembert's equation, automorpnism, multiplicative function

Keltouma, Belfakih  1 ; Elhoucien, Elqorachi  1 ; Rassias, Themistocles M.  2 ; Ahmed, Redouani  3

1 Faculty of Sciences, Department of Mathematics,, University Ibn Zohr, Agadir, Morocco
2 Department of Mathematics, National Technical University of Athens, Zofrafou Campus, 15780 Athens, Greece
3 Faculty of Sciences, Department of Mathematics, University Ibn Zohr, Agadir, Morocco
@article{JNSA_2018_11_7_a2,
     author = {Keltouma, Belfakih  and Elhoucien, Elqorachi  and Rassias, Themistocles M.  and Ahmed, Redouani },
     title = {Superstability of  {Kannappan's} and {Van} vleck's  functional equations},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {894-915},
     publisher = {mathdoc},
     volume = {11},
     number = {7},
     year = {2018},
     doi = {10.22436/jnsa.011.07.03},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.07.03/}
}
TY  - JOUR
AU  - Keltouma, Belfakih 
AU  - Elhoucien, Elqorachi 
AU  - Rassias, Themistocles M. 
AU  - Ahmed, Redouani 
TI  - Superstability of  Kannappan's and Van vleck's  functional equations
JO  - Journal of nonlinear sciences and its applications
PY  - 2018
SP  - 894
EP  - 915
VL  - 11
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.07.03/
DO  - 10.22436/jnsa.011.07.03
LA  - en
ID  - JNSA_2018_11_7_a2
ER  - 
%0 Journal Article
%A Keltouma, Belfakih 
%A Elhoucien, Elqorachi 
%A Rassias, Themistocles M. 
%A Ahmed, Redouani 
%T Superstability of  Kannappan's and Van vleck's  functional equations
%J Journal of nonlinear sciences and its applications
%D 2018
%P 894-915
%V 11
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.07.03/
%R 10.22436/jnsa.011.07.03
%G en
%F JNSA_2018_11_7_a2
Keltouma, Belfakih ; Elhoucien, Elqorachi ; Rassias, Themistocles M. ; Ahmed, Redouani . Superstability of  Kannappan's and Van vleck's  functional equations. Journal of nonlinear sciences and its applications, Tome 11 (2018) no. 7, p. 894-915. doi : 10.22436/jnsa.011.07.03. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.07.03/

[1] J. A. Baker The stability of the cosine equation , Proc. Amer. Math. Soc., Volume 80 (1980), pp. 411-416 | DOI

[2] Baker, J. A.; Lawrence, J.; F. Zorzitto The stability of the equation \(f(x + y) = f(x)f(y)\), Proc. Amer. Math. Soc., Volume 74 (1979), pp. 242-246 | DOI

[3] Belaid, B.; E. ElhoucienEmail An extension of Van Vleck’s functional equation for the sine, Acta Math. Hungarica, Volume 150 (2016), pp. 258-267 | Zbl

[4] Belaid, B.; E. ElhoucienEmail Stability of a generalization of Wilson’s equation, Aequationes Math., Volume 90 (2016), pp. 517-525 | DOI | Zbl

[5] Belaid, B.; ElhoucienEmail, E.; Rassias, J. M. The superstability of d’Alembert’s functional equation on the Heisenberg group, Applied Math. Letters, Volume 23 (2010), pp. 105-109 | Zbl | DOI

[6] T. M. K. Davison D’Alembert’s functional equation on topological groups, Aequationes Math., Volume 76 (2008), pp. 33-53 | DOI

[7] Davison, T. M. K. D’Alembert’s functional equation on topological monoids , Publ. Math. Debrecen, Volume 75 (2009), pp. 41-66 | Zbl

[8] Ebanks, B.; Stetkær, H. d’Alembert’s other functional equation on monoids with an involution, Aequationes Math., Volume 89 (2015), pp. 187-206 | DOI | Zbl

[9] Ebanks, B.; H. Stetkær On Wilson’s functional equations, Aequationes Math., Volume 89 (2015), pp. 339-354 | DOI

[10] Elqorachi, E.; Akkouchi, M. On generalized d’Alembert and Wilson functional equations , Aequationes Math., Volume 66 (2003), pp. 241-256 | DOI

[11] Elqorachi, E.; M. Akkouchi The superstability of the generalized d’Alembert functional equation, Georgian Math. J., Volume 10 (2003), pp. 503-508

[12] Elqorachi, E.; Redouani, A. An extensions of Kannappan’s and Van Vleck’s functional equations on semigroups, Manuscript (2016)

[13] Elqorachi, E.; A. Redouani Solutions and stability of generalized Kannappan’s and Van Vleck’s functional equation, Annales Math. Silesianae, Volume 2017 (2017), pp. 1-32 | DOI

[14] Elqorachi, E.; A. Redouani Solutions and stability of variant of Wilson’s functional equation, arXiv, Volume 2018 (2018), pp. 1-19

[15] Elqorachi, E.; Redouani, A.; Rassias, T. M. Solutions and stability of a variant of Van Vleck’s and d’Alembert’s functional equations, Nonlinear Anal. Appl., Volume 7 (2016), pp. 279-301 | Zbl

[16] G. L. Forti Hyers-Ulam stability of functional equations in several variables, Aequationes Math., Volume 50 (1995), pp. 143-190 | DOI

[17] R. Ger Superstability is not natural, Rocznik Nauk.-Dydakt. Prace Mat., Volume 159 (1993), pp. 109-123 | Zbl

[18] Kannappan, P. A functional equation for the cosine, Canad. Math. Bull., Volume 2 (1968), pp. 495-498

[19] Kannappan, P. Functional Equations and Inequalities with Applications, Springer, New York, 2009 | DOI

[20] Kim, G. H. On the stability of the Pexiderized trigonometric functional equation, Appl. Math. Comput., Volume 203 (2008), pp. 99-105 | DOI

[21] Perkins, A. M.; P. K. Sahoo On two functional equations with involution on groups related to sine and cosine functions , Aequationes Math., Volume 89 (2015), pp. 1251-1263 | DOI | Zbl

[22] Rassias, T. M.; Brzdȩk, J. Functional Equations in Mathematical Analysis, Springer, New York, 2012 | DOI

[23] Redouani, A.; Elqorachi, E.; Rassias, M. T. The superstability of d’Alembert’s functional equation on step 2-nilpotent groups, Aequationes Math., Volume 74 (2007), pp. 226-241 | Zbl

[24] Stetkær, H. Functional Equations on Groups, World Scientific Publishing Co, New Jersey, 2013

[25] H. Stetkær A variant of d’Alembert’s functional equation, Aequationes Math., Volume 89 (2015), pp. 657-662 | DOI

[26] H. Stetkær Van Vleck’s functional equation for the sine, Aequationes Math., Volume 90 (2016), pp. 25-34 | DOI

[27] Stetkær, H. Kannappan’s functional equation on semigroups with involution, Semigroup Forum, Volume 94 (2017), pp. 17-30 | DOI | Zbl

[28] Székelyhidi, L. On a stability theorem, C. R. Math. Acad. Sci. Canada, Volume 3 (1981), pp. 253-255

[29] L. Székelyhidi On a theorem of Baker, Lawrence and Zorzitto, Proc. Amer. Math. Soc., Volume 84 (1982), pp. 95-96 | DOI | Zbl

[30] Székelyhidi, L. The stability of the sine and cosine functional equations, Proc. Amer. Math. Soc., Volume 110 (1990), pp. 109-115 | DOI

[31] Van, E. B. Vleck A functional equation for the sine, Ann. of Math., Volume 11 (1910), pp. 161-165 | DOI

[32] Van, E. B. Vleck A functional equation for the sine, Ann. of Math., Volume 13 (1911/12), pp. 1-154 | DOI

Cité par Sources :