Sharpening and generalizations of Shafer-Fink and Wilker type inequalities: a new approach
Journal of nonlinear sciences and its applications, Tome 11 (2018) no. 7, p. 885-893.

Voir la notice de l'article provenant de la source International Scientific Research Publications

In this paper, we propose and prove some generalizations and sharpenings of certain inequalities of Wilker's and Shafer-Fink's type. Application of the Wu-Debnath theorem enabled us to prove some double sided inequalities.
DOI : 10.22436/jnsa.011.07.02
Classification : 33B10, 26D05
Keywords: Sharpening, generalization, inequalities of Wilker's and Shafer-Fink's type

Rašajski, Marija 1 ; Lutovac, Tatjana  1 ; Malešević, Branko 1

1 School of Electrical Engineering, University of Belgrade, Bulevar kralja Aleksandra 73, 11000 Belgrade, Serbia
@article{JNSA_2018_11_7_a1,
     author = {Ra\v{s}ajski,  Marija and Lutovac, Tatjana  and Male\v{s}evi\'c, Branko},
     title = {Sharpening and generalizations of {Shafer-Fink} and {Wilker} type inequalities: a new approach},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {885-893},
     publisher = {mathdoc},
     volume = {11},
     number = {7},
     year = {2018},
     doi = {10.22436/jnsa.011.07.02},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.07.02/}
}
TY  - JOUR
AU  - Rašajski,  Marija
AU  - Lutovac, Tatjana 
AU  - Malešević, Branko
TI  - Sharpening and generalizations of Shafer-Fink and Wilker type inequalities: a new approach
JO  - Journal of nonlinear sciences and its applications
PY  - 2018
SP  - 885
EP  - 893
VL  - 11
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.07.02/
DO  - 10.22436/jnsa.011.07.02
LA  - en
ID  - JNSA_2018_11_7_a1
ER  - 
%0 Journal Article
%A Rašajski,  Marija
%A Lutovac, Tatjana 
%A Malešević, Branko
%T Sharpening and generalizations of Shafer-Fink and Wilker type inequalities: a new approach
%J Journal of nonlinear sciences and its applications
%D 2018
%P 885-893
%V 11
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.07.02/
%R 10.22436/jnsa.011.07.02
%G en
%F JNSA_2018_11_7_a1
Rašajski,  Marija; Lutovac, Tatjana ; Malešević, Branko. Sharpening and generalizations of Shafer-Fink and Wilker type inequalities: a new approach. Journal of nonlinear sciences and its applications, Tome 11 (2018) no. 7, p. 885-893. doi : 10.22436/jnsa.011.07.02. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.07.02/

[1] Alirezaei, G.; Mathar, R. Scrutinizing the average error probability for nakagami fading channels, in The IEEE International Symposium on Information Theory (ISIT’14), Honolulu, Hawai, USA (2014), pp. 2884-2888 | DOI

[2] Anderson, D. G.; Vuorinen, M.; Zhang, X. Topics in Special Functions III, Analytic number theory, approximation theory and special functions, 297–345, Springer, New York, 2014 | DOI

[3] Bercu, G. Sharp Refinements for the Inverse Sine Function Related to Shafer-Fink’s Inequality , Math. Probl. Eng., Volume 2017 (2017), pp. 1-5 | DOI | Zbl

[4] Cloud, M. J.; Drachman, B. C.; Lebedev, L. P. Inequalities With Applications to Engineering, Springer, London, 2014 | DOI

[5] Abreu, G. T. F. De Jensen-Cotes upper and lower bounds on the Gaussian Q-function and related functions, IEEE Trans. Commun., Volume 57 (2009), pp. 3328-3338 | DOI

[6] A. M. Fink Two inequalities, Univ. Beograd Publ. Elektroteh. Fak. Ser. Mat., Volume 6 (1995), pp. 49-50

[7] Lutovac, T.; Malešević, B.; Mortici, C. The natural algorithmic approach of mixed trigonometric-polynomial problems, J. Inequal. Appl., Volume 2017 (2017), pp. 1-16 | Zbl | DOI

[8] Makragić, M. A method for proving some inequalities on mixed hyperbolic-trigonometric polynomial functions, J. Math. Inequal., Volume 11 (2017), pp. 817-829 | Zbl | DOI

[9] Malešević, B.; Makragić, M. A Method for Proving Some Inequalities on Mixed Trigonometric Polynomial Functions, J. Math. Inequal., Volume 10 (2016), pp. 849-876 | Zbl

[10] Malešević, B.; Lutovac, T.; Rašajski, M.; C. Mortici Extensions of the natural approach to refinements and generalizations of some trigonometric inequalities, Adv. Difference Equ., Volume 2018 (2018), pp. 1-15 | DOI

[11] Malešević, B.; Rašajski, M.; Lutovac, T. Refinements and generalizations of some inequalities of Shafer-Fink’s type for the inverse sine function , J. Inequal. Appl., Volume 2017 (2017), pp. 1-9 | Zbl | DOI

[12] Malešević, B.; Rašajski, M.; Lutovac, T. Refined estimates and generalizations of inequalities related to the arctangent function and Shafer’s inequality, arXiv, Volume 2017 (2017), pp. 1-15

[13] Mitrinović, D. S. Analytic Inequalities, Springer-Verlag, New York-Berlin, 1970 | DOI

[14] C. Mortici A subtly analysis of Wilker inequation, Appl. Math. Comput., Volume 231 (2014), pp. 516-520 | DOI

[15] Nenezić, M.; Malešević, B.; Mortici, C. New approximations of some expressions involving trigonometric functions, Appl. Math. Comput., Volume 283 (2016), pp. 299-315 | DOI

[16] Rahmatollahi, G.; Abreu, G. T. F. De Closed-Form Hop-Count Distributions in Random Networks with Arbitrary Routing, IEEE Trans. Commun., Volume 60 (2012), pp. 429-444 | DOI

[17] Shafer, R. E. Elementary Problems 1867, Amer. Math. Monthly, Volume 73 (1966), pp. 1-309 | DOI

[18] J. B. Wilker Elementary Problems 3306, Amer. Math. Monthly , Volume 96 (1989), pp. 1-55 | DOI

[19] Wu, S.; Debnath, L. A generalization of L’Hospital-type rules for monotonicity and its application, Appl. Math. Lett., Volume 22 (2009), pp. 284-290 | Zbl | DOI

Cité par Sources :