Voir la notice de l'article provenant de la source International Scientific Research Publications
Eltayeb, Hassan  1 ; Bachar, Imed  1
@article{JNSA_2018_11_6_a11, author = {Eltayeb, Hassan and Bachar, Imed }, title = {A note on double {Laplace} decomposition method for solving singular one dimensional pseudo thermo-elasticity coupled system}, journal = {Journal of nonlinear sciences and its applications}, pages = {864-876}, publisher = {mathdoc}, volume = {11}, number = {6}, year = {2018}, doi = {10.22436/jnsa.011.06.12}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.06.12/} }
TY - JOUR AU - Eltayeb, Hassan AU - Bachar, Imed TI - A note on double Laplace decomposition method for solving singular one dimensional pseudo thermo-elasticity coupled system JO - Journal of nonlinear sciences and its applications PY - 2018 SP - 864 EP - 876 VL - 11 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.06.12/ DO - 10.22436/jnsa.011.06.12 LA - en ID - JNSA_2018_11_6_a11 ER -
%0 Journal Article %A Eltayeb, Hassan %A Bachar, Imed %T A note on double Laplace decomposition method for solving singular one dimensional pseudo thermo-elasticity coupled system %J Journal of nonlinear sciences and its applications %D 2018 %P 864-876 %V 11 %N 6 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.06.12/ %R 10.22436/jnsa.011.06.12 %G en %F JNSA_2018_11_6_a11
Eltayeb, Hassan ; Bachar, Imed . A note on double Laplace decomposition method for solving singular one dimensional pseudo thermo-elasticity coupled system. Journal of nonlinear sciences and its applications, Tome 11 (2018) no. 6, p. 864-876. doi : 10.22436/jnsa.011.06.12. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.06.12/
[1] Convergence of Adomian’s Method Applied to Differential Equations, Comput. Math. Model., Volume 28 (1994), pp. 103-109 | DOI
[2] Convergence of Adomian’s Method Applied to Nonlinear Equations, Math. Comput. Modelling., Volume 20 (1994), pp. 69-73 | DOI
[3] Practical Formulae for the Calculus of Multivariable Adomian Polynomials, Math. Comput. Modelling., Volume 22 (1995), pp. 89-93 | Zbl | DOI
[4] An approximation of the analytic solution of the shock wave equation, J. Comput. Appl. Math., Volume 192 (2006), pp. 301-309 | DOI
[5] Convergence and stability analysis of a novel iteration method for fractional biological population equation, Neural Comput & Applic., Volume 25 (2014), pp. 1021-1030 | DOI
[6] On the new fractional derivative and application to nonlinear Fisher’s reaction-diffusion equation , Appl. Math. Comput., Volume 273 (2016), pp. 948-956 | DOI
[7] On Multi-Laplace Transform for Solving Nonlinear Partial Differential Equations with Mixed Derivatives, Math. Probl. Eng., Volume 2014 (2014), pp. 1-9
[8] On the order of convergence of Adomian method , Appl. Math. Comput., Volume 130 (2002), pp. 383-387 | DOI
[9] On the numerical solution of the system of two-dimensional Burgers’ equations by the decomposition method, Appl. Math. Comput., Volume 158 (2004), pp. 101-109 | Zbl | DOI
[10] A Note on Solutions of Wave, Laplace’s and Heat Equations with Convolution Terms by Using Double Laplace Transform , Appl. Math. Lett., Volume 21 (2008), pp. 1324-1329 | Zbl | DOI
[11] Solving the generalized Burgers-Huxley equation using the Adomian decomposition method , Math. Comput. Modelling., Volume 43 (2006), pp. 1404-1411 | Zbl | DOI
[12] Homotopy perturbation method for solving boundary value problems, Phys. Lett. A, Volume 350 (2006), pp. 87-88 | DOI
[13] A convergence analysis of the ADM and an application, Appl. Math. Comput., Volume 161 (2005), pp. 1015-1025 | Zbl | DOI
[14] A numerical application of the decomposition method for the combined KdV–MKdV equation, Appl. Math. Comput., Volume 168 (2005), pp. 915-926 | DOI | Zbl
[15] A note on defining singular integral as distribution and partial differential equation with convolution term, Math. Comput. Modelling., Volume 49 (2009), pp. 327-336 | DOI | Zbl
[16] On the applications of Laplace and Sumudu transforms, J. Franklin Inst., Volume 347 (2010), pp. 848-862 | Zbl | DOI
[17] A generalized dynamical theory of thermo-elasticity , J. Mech. Phys. Solids., Volume 15 (1967), pp. 299-309 | DOI
[18] Convergence of Adomian’s method and applications to nonlinear partial differential equations , Kybernetes, Volume 21 (1992), pp. 13-25 | DOI
[19] Numerical study of Fisher’s equation by Adomian’s method, Math. Comput. Modelling., Volume 19 (1994), pp. 89-95 | DOI | Zbl
[20] On a coupled nonlinear singular thermoelastic system , Nonlinear Anal., Volume 73 (2010), pp. 3195-3208 | Zbl | DOI
[21] A numerical solution of the coupled sine-gordon equation using the modified decomposition method , Appl. Math. Comput., Volume 175 (2006), pp. 1046-1054 | DOI | Zbl
[22] Harmonic wave generation in nonlinear thermoelasticity by variational iteration method and adomian’s method, J. Comput. Appl. Math., Volume 207 (2007), pp. 64-72 | Zbl | DOI
[23] Variational iteration method for one dimensional nonlinear thermoelasticity , Chaos Solitons Fractals, Volume 32 (2007), pp. 145-149 | Zbl | DOI
[24] Partial Differential Equations and Solitary Waves Theory, Springer, Berlin, 2009 | DOI
Cité par Sources :