A note on double Laplace decomposition method for solving singular one dimensional pseudo thermo-elasticity coupled system
Journal of nonlinear sciences and its applications, Tome 11 (2018) no. 6, p. 864-876.

Voir la notice de l'article provenant de la source International Scientific Research Publications

In this paper, Adomain decomposition method is reintroduced with double Laplace transform methods to obtain closed form solutions of linear and nonlinear singular one dimensional pseudo thermo-elasticity coupled system. The nonlinear terms can be easily handled by the use of Adomian polynomials. Furthermore, we illustrate our proposed methods by one example.
DOI : 10.22436/jnsa.011.06.12
Classification : 35A22, 44A10
Keywords: Double Laplace transform, inverse Laplace transform, pseudo thermo-elasticity equation, single Laplace transform, decomposition methods

Eltayeb, Hassan  1 ; Bachar, Imed  1

1 Mathematics Department, College of Science, King Saud University, P. O. Box 2455, Riyadh 11451, Saudi Arabia
@article{JNSA_2018_11_6_a11,
     author = {Eltayeb, Hassan  and Bachar, Imed },
     title = {A note on double {Laplace} decomposition method for solving singular one dimensional pseudo thermo-elasticity coupled system},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {864-876},
     publisher = {mathdoc},
     volume = {11},
     number = {6},
     year = {2018},
     doi = {10.22436/jnsa.011.06.12},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.06.12/}
}
TY  - JOUR
AU  - Eltayeb, Hassan 
AU  - Bachar, Imed 
TI  - A note on double Laplace decomposition method for solving singular one dimensional pseudo thermo-elasticity coupled system
JO  - Journal of nonlinear sciences and its applications
PY  - 2018
SP  - 864
EP  - 876
VL  - 11
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.06.12/
DO  - 10.22436/jnsa.011.06.12
LA  - en
ID  - JNSA_2018_11_6_a11
ER  - 
%0 Journal Article
%A Eltayeb, Hassan 
%A Bachar, Imed 
%T A note on double Laplace decomposition method for solving singular one dimensional pseudo thermo-elasticity coupled system
%J Journal of nonlinear sciences and its applications
%D 2018
%P 864-876
%V 11
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.06.12/
%R 10.22436/jnsa.011.06.12
%G en
%F JNSA_2018_11_6_a11
Eltayeb, Hassan ; Bachar, Imed . A note on double Laplace decomposition method for solving singular one dimensional pseudo thermo-elasticity coupled system. Journal of nonlinear sciences and its applications, Tome 11 (2018) no. 6, p. 864-876. doi : 10.22436/jnsa.011.06.12. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.06.12/

[1] Abbaoui, K.; Cherruault, Y.; Convergence of Adomian’s Method Applied to Differential Equations, Comput. Math. Model., Volume 28 (1994), pp. 103-109 | DOI

[2] Abbaoui, K.; Y. Cherruault Convergence of Adomian’s Method Applied to Nonlinear Equations, Math. Comput. Modelling., Volume 20 (1994), pp. 69-73 | DOI

[3] Abbaoui, K.; Cherruault, Y.; V. Seng Practical Formulae for the Calculus of Multivariable Adomian Polynomials, Math. Comput. Modelling., Volume 22 (1995), pp. 89-93 | Zbl | DOI

[4] Allan, F. M.; Al-khaled, K. An approximation of the analytic solution of the shock wave equation, J. Comput. Appl. Math., Volume 192 (2006), pp. 301-309 | DOI

[5] A. Atangana Convergence and stability analysis of a novel iteration method for fractional biological population equation, Neural Comput & Applic., Volume 25 (2014), pp. 1021-1030 | DOI

[6] A. Atangana On the new fractional derivative and application to nonlinear Fisher’s reaction-diffusion equation , Appl. Math. Comput., Volume 273 (2016), pp. 948-956 | DOI

[7] Atangana, A.; Noutchie, S. C. Oukouomi On Multi-Laplace Transform for Solving Nonlinear Partial Differential Equations with Mixed Derivatives, Math. Probl. Eng., Volume 2014 (2014), pp. 1-9

[8] Babolian, E.; Biazar, J. On the order of convergence of Adomian method , Appl. Math. Comput., Volume 130 (2002), pp. 383-387 | DOI

[9] El-Sayed, S. M.; D. Kaya On the numerical solution of the system of two-dimensional Burgers’ equations by the decomposition method, Appl. Math. Comput., Volume 158 (2004), pp. 101-109 | Zbl | DOI

[10] Eltayeb, H.; A. Kılıçman A Note on Solutions of Wave, Laplace’s and Heat Equations with Convolution Terms by Using Double Laplace Transform , Appl. Math. Lett., Volume 21 (2008), pp. 1324-1329 | Zbl | DOI

[11] Hashim, I.; Noorani, M. S. M.; M. R. Said Al-Hadidi Solving the generalized Burgers-Huxley equation using the Adomian decomposition method , Math. Comput. Modelling., Volume 43 (2006), pp. 1404-1411 | Zbl | DOI

[12] He, J.-H. Homotopy perturbation method for solving boundary value problems, Phys. Lett. A, Volume 350 (2006), pp. 87-88 | DOI

[13] Kaya, D.; Inan, I. E. A convergence analysis of the ADM and an application, Appl. Math. Comput., Volume 161 (2005), pp. 1015-1025 | Zbl | DOI

[14] Kaya, D.; I. E. Inan A numerical application of the decomposition method for the combined KdV–MKdV equation, Appl. Math. Comput., Volume 168 (2005), pp. 915-926 | DOI | Zbl

[15] Kılıçman, A.; Eltayeb, H. A note on defining singular integral as distribution and partial differential equation with convolution term, Math. Comput. Modelling., Volume 49 (2009), pp. 327-336 | DOI | Zbl

[16] Kılıçman, A.; Gadain, H. E. On the applications of Laplace and Sumudu transforms, J. Franklin Inst., Volume 347 (2010), pp. 848-862 | Zbl | DOI

[17] Lord, H.; Shulman, Y. A generalized dynamical theory of thermo-elasticity , J. Mech. Phys. Solids., Volume 15 (1967), pp. 299-309 | DOI

[18] Mavoungou, T.; Y. Cherruault Convergence of Adomian’s method and applications to nonlinear partial differential equations , Kybernetes, Volume 21 (1992), pp. 13-25 | DOI

[19] Mavoungou, T.; Y. Cherruault Numerical study of Fisher’s equation by Adomian’s method, Math. Comput. Modelling., Volume 19 (1994), pp. 89-95 | DOI | Zbl

[20] Mesloub, S.; Mesloub, F. On a coupled nonlinear singular thermoelastic system , Nonlinear Anal., Volume 73 (2010), pp. 3195-3208 | Zbl | DOI

[21] S. S. Ray A numerical solution of the coupled sine-gordon equation using the modified decomposition method , Appl. Math. Comput., Volume 175 (2006), pp. 1046-1054 | DOI | Zbl

[22] N. H. Sweilam Harmonic wave generation in nonlinear thermoelasticity by variational iteration method and adomian’s method, J. Comput. Appl. Math., Volume 207 (2007), pp. 64-72 | Zbl | DOI

[23] Sweilam, N. H.; Khader, M. M. Variational iteration method for one dimensional nonlinear thermoelasticity , Chaos Solitons Fractals, Volume 32 (2007), pp. 145-149 | Zbl | DOI

[24] Wazwaz, A.-M. Partial Differential Equations and Solitary Waves Theory, Springer, Berlin, 2009 | DOI

Cité par Sources :