Controllability of time-dependent neutral stochastic functional differential equations driven by a fractional Brownian motion
Journal of nonlinear sciences and its applications, Tome 11 (2018) no. 6, p. 850-863.

Voir la notice de l'article provenant de la source International Scientific Research Publications

In this paper, we consider the controllability of certain class of non-autonomous neutral evolution stochastic functional differential equations, with time varying delays, driven by a fractional Brownian motion in a separable real Hilbert space. Sufficient conditions for controllability are obtained by employing a fixed point approach. A practical example is provided to illustrate the viability of the abstract result of this work.
DOI : 10.22436/jnsa.011.06.11
Classification : 35R10, 60H15, 60G15, 60J65
Keywords: Controllability, neutral stochastic functional differential equations, evolution operator, fractional Brownian motion

Lakhel, El Hassan  1 ; Tlidi, Abdelmonaim  1

1 National School of Applied Sciences, Cadi Ayyad University, 46000 Safi, Morocco
@article{JNSA_2018_11_6_a10,
     author = {Lakhel, El Hassan  and Tlidi, Abdelmonaim },
     title = {Controllability of time-dependent neutral   stochastic functional differential equations driven by  a fractional  {Brownian} motion},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {850-863},
     publisher = {mathdoc},
     volume = {11},
     number = {6},
     year = {2018},
     doi = {10.22436/jnsa.011.06.11},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.06.11/}
}
TY  - JOUR
AU  - Lakhel, El Hassan 
AU  - Tlidi, Abdelmonaim 
TI  - Controllability of time-dependent neutral   stochastic functional differential equations driven by  a fractional  Brownian motion
JO  - Journal of nonlinear sciences and its applications
PY  - 2018
SP  - 850
EP  - 863
VL  - 11
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.06.11/
DO  - 10.22436/jnsa.011.06.11
LA  - en
ID  - JNSA_2018_11_6_a10
ER  - 
%0 Journal Article
%A Lakhel, El Hassan 
%A Tlidi, Abdelmonaim 
%T Controllability of time-dependent neutral   stochastic functional differential equations driven by  a fractional  Brownian motion
%J Journal of nonlinear sciences and its applications
%D 2018
%P 850-863
%V 11
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.06.11/
%R 10.22436/jnsa.011.06.11
%G en
%F JNSA_2018_11_6_a10
Lakhel, El Hassan ; Tlidi, Abdelmonaim . Controllability of time-dependent neutral   stochastic functional differential equations driven by  a fractional  Brownian motion. Journal of nonlinear sciences and its applications, Tome 11 (2018) no. 6, p. 850-863. doi : 10.22436/jnsa.011.06.11. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.06.11/

[1] Acquistapace, P.; Terreni, B. A unified approach to abstract linear parabolic equations, Rend. Sem. Mat. Univ. Padova, Volume 78 (1987), pp. 47-107

[2] Aoued, D.; Baghli-Bendimerad, S. Mild solutions for Perturbed evolution equations with infinite state-dependent delay, Electron. J. Qual. Theory Differ. Equ., Volume 2013 (2013), pp. 1-24 | DOI | Zbl

[3] Arthi, G.; K. Balachandran Controllability of second-order impulsive functional differential equations with state-dependent delay, Bull. Korean Math. Soc., Volume 48 (2011), pp. 1271-1290 | DOI

[4] Balachandran, K.; Park, J. Y.; S. H. Park Controllability of nonlocal impulsive quasilinear integrodifferential systems in Banach spaces , Rep. Math. Phys., Volume 65 (2010), pp. 247-257 | Zbl | DOI

[5] Balasubramaniam, P.; J. P. Dauer Controllability of semilinear stochastic delay evolution equations in Hilbert spaces, Int. J. Math. Math. Sci., Volume 31 (2002), pp. 157-166 | Zbl

[6] Boufoussi, B.; Hajji, S. Neutral stochastic functional differential equation driven by a fractional Brownian motion in a Hilbert space, Statist. Probab. Lett., Volume 82 (2012), pp. 1549-1558 | DOI

[7] Boufoussi, B.; Hajji, S.; E. H. Lakhel Functional differential equations in Hilbert spaces driven by a fractional Brownian motion, Afr. Mat., Volume 23 (2012), pp. 173-194

[8] Boufoussi, B.; Hajji, S.; Lakhel, E. Time-dependent Neutral stochastic functional differential equation driven by a fractional Brownian motion in a Hilbert space, Commun. Stochastic Anal., Volume 10 (2016), pp. 1-12

[9] Chang, Y.-K.; Anguraj, A.; Arjunan, M. Mallika Controllability of impulsive neutral functional differential inclusions with infinite delay in Banach spaces, Chaos Solitons & Fractals, Volume 39 (2009), pp. 1864-1876 | DOI

[10] J. Klamka Stochastic controllability of linear systems with delay in control, Bull. Pol. Acad. Sci. Tech. Sci., Volume 55 (2007), pp. 23-29

[11] Kolmogoroff, A. N. Wienersche spiralen und einige andere interessante kurven im Hilbertschen raum , (German) C. R. (Doklady) Acad. Sci. URSS (N.S.), Volume 26 (1940), pp. 115-118

[12] E. H. Lakhel Controllability of Neutral Stochastic Functional Integro-Differential Equations Driven By Fractional Brownian Motion, Stoch. Anal. Appl., Volume 34 (2016), pp. 427-440 | DOI

[13] Lakhel, E. H. Exponential stability for stochastic neutral functional differential equations driven by Rosenblatt process with delay and Poisson jumps, Random Oper. Stoch. Equ., Volume 24 (2016), pp. 113-127 | DOI

[14] Lakhel, E.; S. Hajji Existence and Uniqueness of Mild Solutions to Neutral SFDEs driven by a Fractional Brownian Motion with Non-Lipschitz Coefficients , J. Numer. Math. Stoch., Volume 7 (2015), pp. 14-29

[15] Lakhel, E.; M. A. McKibben Controllability of Impulsive Neutral Stochastic Functional Integro-Differential Equations Driven by Fractional Brownian Motion, Chapter 8 In book: Brownian Motion: Elements, Dynamics, and Applications, Editors: M. A. McKibben & M. Webster. Nova Science Publishers,New York (2015), pp. 131-148

[16] Mandelbrot, B. B.; Ness, J. W. Van Fractional Brownian motions, fractional noises and applications, SIAM Rev., Volume 10 (1968), pp. 422-437 | DOI | Zbl

[17] N. I. Mahmudov Controllability of semilinear stochastic systems in Hilbert spaces , J. Math. Anal. Appl., Volume 288 (2003), pp. 197-211 | DOI

[18] Nualart, D. The Malliavin Calculus and Related Topics, second edition, Springer-Verlag, Berlin, 2006 | DOI

[19] Quinn, M. D.; N. Carmichael An approach to non linear control problems using fixed point methods, degree theory and pseudo-inverses, Numer. Funct. Anal. Optim., Volume 7 (1985), pp. 197-219 | Zbl | DOI

[20] Ren, Y.; Cheng, X.; Sakthivel, R. On time-dependent stochastic evolution equations driven by fractional Brownian motion in Hilbert space with finite delay , Math. Methods Appl. Sci., Volume 37 (2014), pp. 2177-2184 | Zbl | DOI

[21] Ren, Y.; Hu, L.; Sakthivel, R. Controllability of impulsive neutral stochastic functional differential inclusions with infinite delay, J. Comput. Appl. Math., Volume 235 (2011), pp. 2603-2614 | DOI

[22] Ren, Y.; D. Sun Second-order neutral impulsive stochastic differential equations with delay, J. Math. Phys., Volume 50 (2009), pp. 1-102709 | DOI

[23] Ren, Y.; Zhou, Q.; L. Chen Existence, uniqueness and stability of mild solutions for time-dependent stochastic evolution equations with Poisson jumps and infinite delay, J. Optim. Theory, Volume 149 (2011), pp. 315-331 | Zbl | DOI

[24] R. Sakthivel Complete controllability of stochastic evolution equations with jumps, Rep. Math. Phys., Volume 68 (2011), pp. 163-174 | Zbl | DOI

[25] Sathya, R.; Balachandran, K. Controllability of nonlocal impulsive stochastic quasilinear integrodifferential systems, Electron. J. Qual. Theory Differ. Equ., Volume 2011 (2011), pp. 1-16 | Zbl | DOI

Cité par Sources :