Voir la notice de l'article provenant de la source International Scientific Research Publications
$ F_{n}\left(x_{1}, x_{2}, \cdots, x_{n}; r\right)=\sum_{1\leq i_{1}$ |
Qian, Wei-Mao  1 ; Chu, Yu-Ming  2
@article{JNSA_2018_11_6_a9, author = {Qian, Wei-Mao and Chu, Yu-Ming }, title = {Schur convexity properties for a class of symmetric functions with applications}, journal = {Journal of nonlinear sciences and its applications}, pages = {841-849}, publisher = {mathdoc}, volume = {11}, number = {6}, year = {2018}, doi = {10.22436/jnsa.011.06.10}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.06.10/} }
TY - JOUR AU - Qian, Wei-Mao AU - Chu, Yu-Ming TI - Schur convexity properties for a class of symmetric functions with applications JO - Journal of nonlinear sciences and its applications PY - 2018 SP - 841 EP - 849 VL - 11 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.06.10/ DO - 10.22436/jnsa.011.06.10 LA - en ID - JNSA_2018_11_6_a9 ER -
%0 Journal Article %A Qian, Wei-Mao %A Chu, Yu-Ming %T Schur convexity properties for a class of symmetric functions with applications %J Journal of nonlinear sciences and its applications %D 2018 %P 841-849 %V 11 %N 6 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.06.10/ %R 10.22436/jnsa.011.06.10 %G en %F JNSA_2018_11_6_a9
Qian, Wei-Mao ; Chu, Yu-Ming . Schur convexity properties for a class of symmetric functions with applications. Journal of nonlinear sciences and its applications, Tome 11 (2018) no. 6, p. 841-849. doi : 10.22436/jnsa.011.06.10. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.06.10/
[1] Ostrowski type inequalities involving conformable fractional integrals, J. Inequal. Appl., Volume 2018 (2018), pp. 1-14 | DOI
[2] Hermite-Hadamard type fractional integral inequalities for \(MT_(r;g,m,\varphi)\)- preinvex functions, J. Comput. Anal. Appl., Volume 26 (2019), pp. 1487-1503
[3] Some new inequalities of Hermite-Hadamard type for s-convex functions with applications, Open Math., Volume 15 (2017), pp. 1414-1430 | Zbl | DOI
[4] Weak majorization inequalities and convex functions, Linear Algebra Appl., Volume 369 (2003), pp. 217-233 | DOI
[5] The Schur multiplicative and harmonic convexities of the complete symmetric function, Math. Nachr., Volume 284 (2011), pp. 653-663 | Zbl | DOI
[6] The Schur concavity, Schur multiplicative and harmonic convexities of the second dual form of the Hamy symmetric function with applications, J. Multivariate Anal., Volume 105 (2012), pp. 412-421 | Zbl | DOI
[7] Necessary and sufficient conditions such that extended mean values are Schur-convex or Schurconcave, J. Math. Kyoto Univ., Volume 48 (2008), pp. 229-238 | DOI | Zbl
[8] The schur geometrical convexity of the extended mean values, J. convex Anal., Volume 15 (2008), pp. 707-718 | Zbl
[9] Schur-convexity of the complete symmetric function, Math. Inequal. Appl., Volume 9 (2006), pp. 567-576 | Zbl
[10] A class of symmetric functions for multiplicatively convex function, Math. Inequal. Appl., Volume 10 (2007), pp. 745-753
[11] Some properties of a class of symmetric functions, J. Math. Anal. Appl., Volume 336 (2007), pp. 70-80 | DOI
[12] Some simple inequalities satisfied by convex function, Messenger Math., Volume 58 (1929), pp. 145-152
[13] Some properties of dual form of the Hamy’s symmetric function, J. Math. Inequal., Volume 1 (2007), pp. 117-125 | Zbl
[14] Inequalities: Theory of Majorization and Its Applications, Academic Press, New York-London, 1979
[15] Convexity, Schur-convexity and bounds for the gamma function involving the digamma function , Rocky Mountain J. Math., Volume 28 (1998), pp. 1053-1066 | Zbl | DOI
[16] A note on Schur-convexity of extended mean values, Rocky Mountain J. Math., Volume 35 (2005), pp. 1787-1793 | Zbl | DOI
[17] Notes on the Schur-convexity of the extended mean values, Taiwanese J. Math., Volume 9 (2005), pp. 411-420 | DOI | Zbl
[18] Über eine Klasse vonMittelbildungen mit Anwendungen auf die Determinantentheorie, Sitzunsber. Berlin.Math. Ges., Volume 22 (1923), pp. 9-20 | Zbl
[19] Schur-convexity and Schur-geometrically concavity of Gini means , Comput. Math. Appl., Volume 57 (2009), pp. 266-274 | DOI | Zbl
[20] An alternative note on the Schur-convexity of the extended mean values, Math. Inequal. Appl., Volume 9 (2006), pp. 219-224 | Zbl
[21] Refinements of transformation inequalities for zero-balanced hypergeometric functions, Acta Math. Sci. Ser. B Engl. Ed., Volume 37 (2017), pp. 607-622 | DOI
[22] Landen inequalities for a class of hypergeometric functions with applications , Math. Inequal. Appl., Volume 21 (2018), pp. 521-537 | Zbl
[23] Infinite series formula for Hübner upper bound function with applications to Herch- Pfluger distortion function, Math. Inequal. Appl., Volume 21 (2018), pp. 629-648
[24] Generalization and sharpness of the power means inquality and their applications, J. Math. Anal. Appl., Volume 312 (2005), pp. 637-652 | DOI
[25] A monotonicity property involving the generalized elliptic integral of the first kind, Math. Inequal. Appl., Volume 20 (2017), pp. 729-735 | Zbl
[26] On approximating the arithmetic-geometric mean and complete elliptic integral of the first kind, J. Math. Anal. Appl., Volume 462 (2018), pp. 1714-1726 | Zbl | DOI
[27] On approximating the error function, Math. Inequal. Appl., Volume 21 (2018), pp. 469-479 | Zbl
[28] Sharp Gautschi inequality for parameter \(0 < p < 1\) with applications, Math. Inequal. Appl., Volume 20 (2017), pp. 1107-1120 | Zbl
[29] Schur-convex functions and isoperimetric inequalities, Proc. Amer. Math. Soc., Volume 126 (1998), pp. 461-470 | Zbl | DOI
Cité par Sources :