Schur convexity properties for a class of symmetric functions with applications
Journal of nonlinear sciences and its applications, Tome 11 (2018) no. 6, p. 841-849.

Voir la notice de l'article provenant de la source International Scientific Research Publications

In the article, we prove that the symmetric function
$ F_{n}\left(x_{1}, x_{2}, \cdots, x_{n}; r\right)=\sum_{1\leq i_{1}$
is Schur convex, Schur multiplicatively convex and Schur harmonic convex on $[0, 1)^{n}$, and establish several new analytic inequalities by use of the theory of majorization, where $r\in \{1, 2, \cdots, n\}$ and $i_{1}, i_{2}, \cdots i_{n}$ are integers.
DOI : 10.22436/jnsa.011.06.10
Classification : 05E05, 26B25
Keywords: Schur convex, Schur multiplicatively convex, Schur harmonic convex, symmetric function

Qian, Wei-Mao  1 ; Chu, Yu-Ming  2

1 School of Distance Education, Huzhou Broadcast and TV University, Huzhou 313000, China
2 Department of Mathematics, Huzhou University, Huzhou 313000, China
@article{JNSA_2018_11_6_a9,
     author = {Qian, Wei-Mao  and Chu, Yu-Ming },
     title = {Schur convexity properties for a class of symmetric functions with applications},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {841-849},
     publisher = {mathdoc},
     volume = {11},
     number = {6},
     year = {2018},
     doi = {10.22436/jnsa.011.06.10},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.06.10/}
}
TY  - JOUR
AU  - Qian, Wei-Mao 
AU  - Chu, Yu-Ming 
TI  - Schur convexity properties for a class of symmetric functions with applications
JO  - Journal of nonlinear sciences and its applications
PY  - 2018
SP  - 841
EP  - 849
VL  - 11
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.06.10/
DO  - 10.22436/jnsa.011.06.10
LA  - en
ID  - JNSA_2018_11_6_a9
ER  - 
%0 Journal Article
%A Qian, Wei-Mao 
%A Chu, Yu-Ming 
%T Schur convexity properties for a class of symmetric functions with applications
%J Journal of nonlinear sciences and its applications
%D 2018
%P 841-849
%V 11
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.06.10/
%R 10.22436/jnsa.011.06.10
%G en
%F JNSA_2018_11_6_a9
Qian, Wei-Mao ; Chu, Yu-Ming . Schur convexity properties for a class of symmetric functions with applications. Journal of nonlinear sciences and its applications, Tome 11 (2018) no. 6, p. 841-849. doi : 10.22436/jnsa.011.06.10. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.06.10/

[1] Khan, M. Adil; Begum, S.; Khurshid, Y.; Chu, Y.-M. Ostrowski type inequalities involving conformable fractional integrals, J. Inequal. Appl., Volume 2018 (2018), pp. 1-14 | DOI

[2] Khan, M. Adil; Chu, Y.-M.; Kashuri, A.; Liko, R. Hermite-Hadamard type fractional integral inequalities for \(MT_(r;g,m,\varphi)\)- preinvex functions, J. Comput. Anal. Appl., Volume 26 (2019), pp. 1487-1503

[3] Khan, M. Adil; Chu, Y.-M.; Khan, T. U.; Khan, J. Some new inequalities of Hermite-Hadamard type for s-convex functions with applications, Open Math., Volume 15 (2017), pp. 1414-1430 | Zbl | DOI

[4] Aujla, J. S.; F. C. Silva Weak majorization inequalities and convex functions, Linear Algebra Appl., Volume 369 (2003), pp. 217-233 | DOI

[5] Chu, Y.-M.; Wang, G.-D.; X.-M. Zhang The Schur multiplicative and harmonic convexities of the complete symmetric function, Math. Nachr., Volume 284 (2011), pp. 653-663 | Zbl | DOI

[6] Chu, Y.-M.; Xia, W.-F.; Zhang, X.-H. The Schur concavity, Schur multiplicative and harmonic convexities of the second dual form of the Hamy symmetric function with applications, J. Multivariate Anal., Volume 105 (2012), pp. 412-421 | Zbl | DOI

[7] Chu, Y.-M.; Zhang, X.-M. Necessary and sufficient conditions such that extended mean values are Schur-convex or Schurconcave, J. Math. Kyoto Univ., Volume 48 (2008), pp. 229-238 | DOI | Zbl

[8] Chu, Y.-M.; Zhang, X.-M.; G. Wang The schur geometrical convexity of the extended mean values, J. convex Anal., Volume 15 (2008), pp. 707-718 | Zbl

[9] K. Guan Schur-convexity of the complete symmetric function, Math. Inequal. Appl., Volume 9 (2006), pp. 567-576 | Zbl

[10] K. Guan A class of symmetric functions for multiplicatively convex function, Math. Inequal. Appl., Volume 10 (2007), pp. 745-753

[11] K. Guan Some properties of a class of symmetric functions, J. Math. Anal. Appl., Volume 336 (2007), pp. 70-80 | DOI

[12] Hardy, G. H.; Littledwood, J. E.; Pólya, G. Some simple inequalities satisfied by convex function, Messenger Math., Volume 58 (1929), pp. 145-152

[13] Jiang, W.-D. Some properties of dual form of the Hamy’s symmetric function, J. Math. Inequal., Volume 1 (2007), pp. 117-125 | Zbl

[14] Marshall, A.W.; Olkin, I. Inequalities: Theory of Majorization and Its Applications, Academic Press, New York-London, 1979

[15] M. Merkle Convexity, Schur-convexity and bounds for the gamma function involving the digamma function , Rocky Mountain J. Math., Volume 28 (1998), pp. 1053-1066 | Zbl | DOI

[16] F. Qi A note on Schur-convexity of extended mean values, Rocky Mountain J. Math., Volume 35 (2005), pp. 1787-1793 | Zbl | DOI

[17] Qi, F.; Sándor, J.; Dragomir, S. S.; Sofo, A. Notes on the Schur-convexity of the extended mean values, Taiwanese J. Math., Volume 9 (2005), pp. 411-420 | DOI | Zbl

[18] Schur, I. Über eine Klasse vonMittelbildungen mit Anwendungen auf die Determinantentheorie, Sitzunsber. Berlin.Math. Ges., Volume 22 (1923), pp. 9-20 | Zbl

[19] Shi, H.-N.; Jiang, Y.-M.; Jiang, W.-D. Schur-convexity and Schur-geometrically concavity of Gini means , Comput. Math. Appl., Volume 57 (2009), pp. 266-274 | DOI | Zbl

[20] Shi, H.-N.; Wu, S.-H.; Qi, F. An alternative note on the Schur-convexity of the extended mean values, Math. Inequal. Appl., Volume 9 (2006), pp. 219-224 | Zbl

[21] Wang, M.-K.; Y.-M. Chu Refinements of transformation inequalities for zero-balanced hypergeometric functions, Acta Math. Sci. Ser. B Engl. Ed., Volume 37 (2017), pp. 607-622 | DOI

[22] Wang, M.-K.; Chu, Y.-M. Landen inequalities for a class of hypergeometric functions with applications , Math. Inequal. Appl., Volume 21 (2018), pp. 521-537 | Zbl

[23] Wang, M.-K.; Qiu, S.-L.; Chu, Y.-M. Infinite series formula for Hübner upper bound function with applications to Herch- Pfluger distortion function, Math. Inequal. Appl., Volume 21 (2018), pp. 629-648

[24] S.Wu Generalization and sharpness of the power means inquality and their applications, J. Math. Anal. Appl., Volume 312 (2005), pp. 637-652 | DOI

[25] Yang, Z.-H.; Y.-M. Chu A monotonicity property involving the generalized elliptic integral of the first kind, Math. Inequal. Appl., Volume 20 (2017), pp. 729-735 | Zbl

[26] Yang, Z.-H.; Qian, W.-M.; Chu, Y.-M.; Zhang, W. On approximating the arithmetic-geometric mean and complete elliptic integral of the first kind, J. Math. Anal. Appl., Volume 462 (2018), pp. 1714-1726 | Zbl | DOI

[27] Yang, Z.-H.; Qian, W.-M.; Chu, Y.-M.; W. Zhang On approximating the error function, Math. Inequal. Appl., Volume 21 (2018), pp. 469-479 | Zbl

[28] Yang, Z.-H.; Zhang, W.; Chu, Y.-M. Sharp Gautschi inequality for parameter \(0 < p < 1\) with applications, Math. Inequal. Appl., Volume 20 (2017), pp. 1107-1120 | Zbl

[29] Zhang, X.-M. Schur-convex functions and isoperimetric inequalities, Proc. Amer. Math. Soc., Volume 126 (1998), pp. 461-470 | Zbl | DOI

Cité par Sources :