$BL_{p,\nu}^{m}$ estimates for the Riesz transforms associated with Laplace-Bessel operator
Journal of nonlinear sciences and its applications, Tome 11 (2018) no. 6, p. 832-840.

Voir la notice de l'article provenant de la source International Scientific Research Publications

In this paper, we introduce higher order Riesz-Bessel transforms which we can express partial derivatives of order $\alpha$ of $I_{m,\nu}f$ for $f\in L_{p,\nu}$. In addition, we establish relationship between Riesz potential with higher order Riesz-Bessel transform related to generalized shift operator. By using this relationship, we make some improvements of integral estimates for $I_{m,\nu}f$ and higher order Riesz-Bessel transform $R_{\nu}^{m}$ in the Beppo Levi space $BL_{p,\nu}^{m}$. We prove an estimate for the singular integral operator with convolution type generated by generalized shift operator in the Beppo Levi spaces.
DOI : 10.22436/jnsa.011.06.09
Classification : 47H10, 45E10, 47B37
Keywords: Laplace-Bessel operator, Bessel generalized shift operator, Riesz-Bessel transform, fractional integral operator, Beppo Levi spaces

Ekincioglu, Ismail  1 ; Keskin, Cansu  1 ; Guner, Serap  1

1 Department of Mathematics Kutahya, Dumlupnar University, Turkey
@article{JNSA_2018_11_6_a8,
     author = {Ekincioglu, Ismail  and Keskin, Cansu  and Guner, Serap },
     title = {\(BL_{p,\nu}^{m}\) estimates for the {Riesz} transforms associated with {Laplace-Bessel} operator},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {832-840},
     publisher = {mathdoc},
     volume = {11},
     number = {6},
     year = {2018},
     doi = {10.22436/jnsa.011.06.09},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.06.09/}
}
TY  - JOUR
AU  - Ekincioglu, Ismail 
AU  - Keskin, Cansu 
AU  - Guner, Serap 
TI  - \(BL_{p,\nu}^{m}\) estimates for the Riesz transforms associated with Laplace-Bessel operator
JO  - Journal of nonlinear sciences and its applications
PY  - 2018
SP  - 832
EP  - 840
VL  - 11
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.06.09/
DO  - 10.22436/jnsa.011.06.09
LA  - en
ID  - JNSA_2018_11_6_a8
ER  - 
%0 Journal Article
%A Ekincioglu, Ismail 
%A Keskin, Cansu 
%A Guner, Serap 
%T \(BL_{p,\nu}^{m}\) estimates for the Riesz transforms associated with Laplace-Bessel operator
%J Journal of nonlinear sciences and its applications
%D 2018
%P 832-840
%V 11
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.06.09/
%R 10.22436/jnsa.011.06.09
%G en
%F JNSA_2018_11_6_a8
Ekincioglu, Ismail ; Keskin, Cansu ; Guner, Serap . \(BL_{p,\nu}^{m}\) estimates for the Riesz transforms associated with Laplace-Bessel operator. Journal of nonlinear sciences and its applications, Tome 11 (2018) no. 6, p. 832-840. doi : 10.22436/jnsa.011.06.09. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.06.09/

[1] Aliev, I. A. On Riesz transformations generated by generalized shift operator, Izv. Acad. Sci. Azerb., Volume 1 (1987), pp. 7-13

[2] Aliev, I. A.; A. D. Gadjiev On classes of operators of potential types, generated by a shift, Reports of enlarged Session of the Seminars of I. N. Vekua Inst. of Applied Mathematics, Tbilisi, Volume 3 (1988), pp. 21-24

[3] Aliev, I. A.; A. D. Gadjiev Weighted estimates for multidimensional singular integrals generated by the generalized shift operator, Russian Acad. Sci. Sb. Math., Volume 77 (1994), pp. 37-55

[4] Deny, J.; J. L. Lions Les espaces du type de Beppo Levi , Ann. Inst. Fourier, Volume 5 (1995), pp. 305-370

[5] I. Ekincioglu The boundedness of high order Riesz-Bessel transformations generated by the generalized shift operator in weighted \(L_{p,\omega,\gamma}\)-spaces with general weights, Acta Appl. Math., Volume 109 (2010), pp. 591-598 | DOI | Zbl

[6] Ekincioglu, ˙I.; Ozkın, I. K. On higher order Riesz transformations generated by generalized shift operator, Tr. J. of Mathematics, Volume 21 (1997), pp. 51-60

[7] Ekincioglu, I.; Sayan, H. H.; Keskin, C. High order Riesz transforms and mean value formula for generalized translate operator, J. Inequal. Appl., Volume 2014 (2014), pp. 1-18 | Zbl | DOI

[8] V. S. Guliev Sobolev’s theorem for B-Riesz potentials, (Russian) Dokl. Akad. Nauk, Volume 358 (1998), pp. 450-451

[9] V. S. Guliev On maximal function and fractional integral, associated with the Bessel differential operator, Math. Inequal. Appl., Volume 6 (2003), pp. 317-330

[10] Kipriyanov, I. A.; M. I. Klyuchantsev On singular integrals generated by the generalized shift operator II , (Russian) Sibirsk. Mat. Zh., Volume 11 (1970), pp. 1060-1083

[11] Kipriyanov, I. A.; L. N. Lyakhov Multipliers of the mixed Fourier-Bessel transform, (Russian) Dokl. Akad. Nauk., Volume 354 (1997), pp. 449-451

[12] Kurokawa, T. Riesz potentials, higher Riesz transforms and Beppo Levi spaces, Hiroshima Math. J., Volume 18 (1988), pp. 541-597 | Zbl

[13] Kurokawa, T. On the closure of the Lizorkin space in spaces of Beppo Levi type, Studia Math., Volume 150 (2002), pp. 99-120 | Zbl | DOI

[14] T. Kurokawa Higher Riesz transforms and derivatives of the Riesz kernels, Integral Transforms Spec. Funct., Volume 15 (2004), pp. 51-71 | DOI | Zbl

[15] Levitan, B. M. Bessel function expansions in series and Fourier integrals, (Russian) Uspehi Matem. Nauk (N.S.), Volume 6 (1951), pp. 102-143

[16] Levitan, B. M. The theory of generalized translation operators, Nauka, Moscow, 1973

[17] Lyakhov, L. N. Multipliers of the mixed Fourier-Bessel transform , Proc. Steklov Inst. Math., Volume 214 (1996), pp. 227-242 | Zbl

[18] Mizuta, Y. Integral representations of Beppo Levi functions of higher order, Hiroshima Math. J., Volume 4 (1974), pp. 375-396 | Zbl

[19] M. Ohtsuka Extremal length and precise functions in 3-space, Lecture Notes at Hiroshima University, , 1973

[20] S. G. Samko On spaces of Riesz potentials, Math. USSR Izv., Volume 10 (1976), pp. 1089-1117

[21] E. M. Stein Singular integrals and differentiability properties of functions, Princeton University Press, Princeton, 1970

Cité par Sources :