Sharp generalized Papenfuss-Bach-type inequality
Journal of nonlinear sciences and its applications, Tome 11 (2018) no. 6, p. 770-777.

Voir la notice de l'article provenant de la source International Scientific Research Publications

In this paper, we prove and develop a conjecture on the generalized double Papenfuss-Bach inequality proposed by Sun and Zhu [Z. Sun, L. Zhu, J. Appl. Math., $\textbf{2011}$ (2011), 9 pages]. In the last section we pose a conjecture on a general form of Papenfuss-Bach-type inequality.
DOI : 10.22436/jnsa.011.06.04
Classification : 33B10, 26D05
Keywords: Circular approximation, Bernoulli numbers, Papenfuss-Bach inequality

Zhu, Ling  1

1 Department of Mathematics, Zhejiang Gongshang University, Hangzhou, China
@article{JNSA_2018_11_6_a3,
     author = {Zhu, Ling },
     title = {Sharp generalized {Papenfuss-Bach-type} inequality},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {770-777},
     publisher = {mathdoc},
     volume = {11},
     number = {6},
     year = {2018},
     doi = {10.22436/jnsa.011.06.04},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.06.04/}
}
TY  - JOUR
AU  - Zhu, Ling 
TI  - Sharp generalized Papenfuss-Bach-type inequality
JO  - Journal of nonlinear sciences and its applications
PY  - 2018
SP  - 770
EP  - 777
VL  - 11
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.06.04/
DO  - 10.22436/jnsa.011.06.04
LA  - en
ID  - JNSA_2018_11_6_a3
ER  - 
%0 Journal Article
%A Zhu, Ling 
%T Sharp generalized Papenfuss-Bach-type inequality
%J Journal of nonlinear sciences and its applications
%D 2018
%P 770-777
%V 11
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.06.04/
%R 10.22436/jnsa.011.06.04
%G en
%F JNSA_2018_11_6_a3
Zhu, Ling . Sharp generalized Papenfuss-Bach-type inequality. Journal of nonlinear sciences and its applications, Tome 11 (2018) no. 6, p. 770-777. doi : 10.22436/jnsa.011.06.04. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.06.04/

[1] Abramowitz, M.; Stegun, I. A.; Handbook of Mathematical Functions: with Formulas, Graphs, and Mathematical Tables, Dover publications, New York, 1972

[2] G. Bach Trigonometric inequality, Amer. Math. Mon., Volume 87 (1980), p. 62-62

[3] Biernacki, M.; J. Krzyz On the monotonicity of certain functionals in the theory of analytic functions , Ann. Univ. M. Curie-Sklodowska, Volume 9 (1955), pp. 135-147

[4] Chen, C.-P.; Paris, R. B. Series representations of the remainders in the expansions for certain trigonometric and hyperbolic functions with applications, arXiv, Volume 2016 (2016), pp. 1-28

[5] Ge, H.-F. New Sharp Bounds for the Bernoulli numbers and refinement of Becker-Stark inequalities, J. Appl. Math., Volume 2012 (2012), pp. 1-7 | Zbl

[6] A. Jeffrey Handbook of Mathematical Formulas and Integrals, Third edition, Elsevier Academic Press, San Diego, CA, 2004

[7] Lutovac, T.; Malešević, B.; C. Mortici The natural algorithmic approach of mixed trigonometric-polynomial problems , J. Inequal. Appl., Volume 2017 (2017), pp. 1-16 | Zbl | DOI

[8] Lutovac, T.; Malešević, B.; Rašajski, M. A new method for proving some inequalities related to several special functions, arXiv, Volume 2018 (2018), pp. 1-15

[9] Malešević, B.; Banjac, B.; I. Jovović A proof of two conjectures of Chao-Ping Chen for inverse trigonometric functions, J. Math. Inequal., Volume 11 (2017), pp. 151-162 | Zbl | DOI

[10] Malešević, B.; Lutovac, T.; Banjac, B. A proof of an open problem of Yusuke Nishizawa for a power-exponential function, arXiv, Volume 2016 (2016), pp. 1-11

[11] Malešević, B.; Lutovac, T.; Rašajski, M.; C. Mortici Extensions of the natural approach to refinements, and generalizations of some trigonometric inequalities, Adv. Difference Equ., Volume 2018 (2018), pp. 1-15 | DOI

[12] Malešević, B.; M. Makragić A method for proving some inequalities on mixed trigonometric polynomial functions, J. Math. Inequal., Volume 10 (2016), pp. 849-876 | Zbl | DOI

[13] Malešević, B.; Rašajski, M.; Lutovac, T. A new approach to the sharpening and generalizations of Shafer-Fink and Wilker type inequalities, arXiv, Volume 2017 (2017), pp. 1-11

[14] Malešević, B.; Rašajski, M.; Lutovac, T. Refinements and generalizations of some inequalities of Shafer-Fink’s type for the inverse sine function, J. Inequal. Appl., Volume 2017 (2017), pp. 1-9 | DOI | Zbl

[15] Nenezic, M.; Zhu, L.; Some improvements of Jordan-Steckin and Becker-Stark inequalities, arXiv, Volume 2018 (2018), pp. 1-12

[16] Qi, F. A double inequality for ratios of the Bernoulli numbers , ResearchGate Dataset, Volume 2015 (2015), pp. 1-6 | DOI

[17] Sun, Z.; L. Zhu Some refinements of inequalities for circular functions, J. Appl. Math., Volume 2011 (2011), pp. 1-9 | Zbl

[18] Wilson, R. R.; Ecker, M. W.; Papenfuss, M. C.; Pambuccian, V.; Witsenhausen, H. S.; P. M. Gibson Problems and Solutions: Elementary Problems: E2737-E2742, Amer. Math. Monthly, Volume 85 (1978), pp. 764-765 | DOI

[19] Wu, S.; L. Debnath A generalization of L’Hospital-type rules for monotonicity and its application , Appl. Math. Lett., Volume 22 (2009), pp. 284-290 | Zbl | DOI

Cité par Sources :