Voir la notice de l'article provenant de la source International Scientific Research Publications
Zhu, Ling  1
@article{JNSA_2018_11_6_a3, author = {Zhu, Ling }, title = {Sharp generalized {Papenfuss-Bach-type} inequality}, journal = {Journal of nonlinear sciences and its applications}, pages = {770-777}, publisher = {mathdoc}, volume = {11}, number = {6}, year = {2018}, doi = {10.22436/jnsa.011.06.04}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.06.04/} }
TY - JOUR AU - Zhu, Ling TI - Sharp generalized Papenfuss-Bach-type inequality JO - Journal of nonlinear sciences and its applications PY - 2018 SP - 770 EP - 777 VL - 11 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.06.04/ DO - 10.22436/jnsa.011.06.04 LA - en ID - JNSA_2018_11_6_a3 ER -
Zhu, Ling . Sharp generalized Papenfuss-Bach-type inequality. Journal of nonlinear sciences and its applications, Tome 11 (2018) no. 6, p. 770-777. doi : 10.22436/jnsa.011.06.04. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.06.04/
[1] Handbook of Mathematical Functions: with Formulas, Graphs, and Mathematical Tables, Dover publications, New York, 1972
[2] Trigonometric inequality, Amer. Math. Mon., Volume 87 (1980), p. 62-62
[3] On the monotonicity of certain functionals in the theory of analytic functions , Ann. Univ. M. Curie-Sklodowska, Volume 9 (1955), pp. 135-147
[4] Series representations of the remainders in the expansions for certain trigonometric and hyperbolic functions with applications, arXiv, Volume 2016 (2016), pp. 1-28
[5] New Sharp Bounds for the Bernoulli numbers and refinement of Becker-Stark inequalities, J. Appl. Math., Volume 2012 (2012), pp. 1-7 | Zbl
[6] Handbook of Mathematical Formulas and Integrals, Third edition, Elsevier Academic Press, San Diego, CA, 2004
[7] The natural algorithmic approach of mixed trigonometric-polynomial problems , J. Inequal. Appl., Volume 2017 (2017), pp. 1-16 | Zbl | DOI
[8] A new method for proving some inequalities related to several special functions, arXiv, Volume 2018 (2018), pp. 1-15
[9] A proof of two conjectures of Chao-Ping Chen for inverse trigonometric functions, J. Math. Inequal., Volume 11 (2017), pp. 151-162 | Zbl | DOI
[10] A proof of an open problem of Yusuke Nishizawa for a power-exponential function, arXiv, Volume 2016 (2016), pp. 1-11
[11] Extensions of the natural approach to refinements, and generalizations of some trigonometric inequalities, Adv. Difference Equ., Volume 2018 (2018), pp. 1-15 | DOI
[12] A method for proving some inequalities on mixed trigonometric polynomial functions, J. Math. Inequal., Volume 10 (2016), pp. 849-876 | Zbl | DOI
[13] A new approach to the sharpening and generalizations of Shafer-Fink and Wilker type inequalities, arXiv, Volume 2017 (2017), pp. 1-11
[14] Refinements and generalizations of some inequalities of Shafer-Fink’s type for the inverse sine function, J. Inequal. Appl., Volume 2017 (2017), pp. 1-9 | DOI | Zbl
[15] Some improvements of Jordan-Steckin and Becker-Stark inequalities, arXiv, Volume 2018 (2018), pp. 1-12
[16] A double inequality for ratios of the Bernoulli numbers , ResearchGate Dataset, Volume 2015 (2015), pp. 1-6 | DOI
[17] Some refinements of inequalities for circular functions, J. Appl. Math., Volume 2011 (2011), pp. 1-9 | Zbl
[18] Problems and Solutions: Elementary Problems: E2737-E2742, Amer. Math. Monthly, Volume 85 (1978), pp. 764-765 | DOI
[19] A generalization of L’Hospital-type rules for monotonicity and its application , Appl. Math. Lett., Volume 22 (2009), pp. 284-290 | Zbl | DOI
Cité par Sources :