On Brunn-Minkowski type inequality
Journal of nonlinear sciences and its applications, Tome 11 (2018) no. 6, p. 762-769.

Voir la notice de l'article provenant de la source International Scientific Research Publications

The notion of Aleksandrov body in the classical Brunn-Minkowski theory is extended to that of Orlicz-Aleksandrov body in the Orlicz Brunn-Minkowski theory. The analogs of the Brunn-Minkowski type inequality and the first variations of volume are established via Orlicz-Aleksandrov body. We also make some considerations for the polar of Orlicz combination.
DOI : 10.22436/jnsa.011.06.03
Classification : 52A20, 52A40
Keywords: Orlicz-Aleksandrov body, Brunn-Minkowski type inequality, Orlicz combination

Ji, Lewen  1 ; Zeng, Zhenbing  2 ; Zhong, Jingjing  3

1 Department of Mathematics, East China University of Technology, Nanchang 330013, China;Department of Mathematics, Shanghai University, Shanghai 200444,, China
2 Department of Mathematics, Shanghai University, Shanghai 200444,, China
3 School of Public Finance and Public Administration, Jiangxi University of Finance and Economics, Nanchang 330013, China
@article{JNSA_2018_11_6_a2,
     author = {Ji, Lewen  and Zeng, Zhenbing  and Zhong, Jingjing },
     title = {On {Brunn-Minkowski} type inequality},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {762-769},
     publisher = {mathdoc},
     volume = {11},
     number = {6},
     year = {2018},
     doi = {10.22436/jnsa.011.06.03},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.06.03/}
}
TY  - JOUR
AU  - Ji, Lewen 
AU  - Zeng, Zhenbing 
AU  - Zhong, Jingjing 
TI  - On Brunn-Minkowski type inequality
JO  - Journal of nonlinear sciences and its applications
PY  - 2018
SP  - 762
EP  - 769
VL  - 11
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.06.03/
DO  - 10.22436/jnsa.011.06.03
LA  - en
ID  - JNSA_2018_11_6_a2
ER  - 
%0 Journal Article
%A Ji, Lewen 
%A Zeng, Zhenbing 
%A Zhong, Jingjing 
%T On Brunn-Minkowski type inequality
%J Journal of nonlinear sciences and its applications
%D 2018
%P 762-769
%V 11
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.06.03/
%R 10.22436/jnsa.011.06.03
%G en
%F JNSA_2018_11_6_a2
Ji, Lewen ; Zeng, Zhenbing ; Zhong, Jingjing . On Brunn-Minkowski type inequality. Journal of nonlinear sciences and its applications, Tome 11 (2018) no. 6, p. 762-769. doi : 10.22436/jnsa.011.06.03. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.06.03/

[1] Aleksandrov, A. D. On the theory of mixed volumes.I. Extension of certain concepts in the theory of convex bodies, Mat. Sb., Volume 2 (1937), pp. 947-972

[2] Böröczky, K. J.; Lutwak, E.; Yang, D.; G. Zhang The log-Brunn-Minkowski inequality, Adv. Math., Volume 231 (2012), pp. 1974-1997 | DOI

[3] Campi, S.; P. Gronchi The Lp Busemann-Petty centroid inequality, Adv. Math., Volume 167 (2002), pp. 128-141 | DOI

[4] Campi, S.; P. Gronchi On volume product inequalities for convex sets , Proc. Amer. Math. Soc., Volume 134 (2006), pp. 2393-2402 | DOI

[5] W. J. Firey Mean cross-section measures of harmonic means of convex bodies , Pacific J. Math., Volume 11 (1961), pp. 1263-1266 | Zbl | DOI

[6] Gardner, R. J.; Hug, D.; W. Weil The Orlicz-Brunn-Minkowski theory: A general framework, additions, and inequalities, J. Differential Geom., Volume 97 (2014), pp. 427-476 | DOI | Zbl

[7] Haberl, C.; Lutwak, E.; Yang, D.; Zhang, G. The even Orlicz-Minkowski problem , Adv. Math., Volume 224 (2010), pp. 2485-2510 | DOI | Zbl

[8] Cifre, M. A. Hernández; J. Yepes Nicolás On Brunn-Minkowski type Inequalities for polar bodies, J. Geometric Anal., Volume 26 (2016), pp. 143-155 | Zbl | DOI

[9] Li, A.-J.; Leng, G. A new proof of the Orlicz Busemann-Petty centroid inequality, Proc. Amer. Math. Soc., Volume 139 (2011), pp. 1473-1481 | Zbl | DOI

[10] Lutwak, E. Centroid Bodies and Dual Mixed Volumes, Proc. London Math. Soc., Volume 60 (1990), pp. 365-391 | DOI

[11] Lutwak, E. The Brunn-Minkowski-Firey theory. I. Mixed volumes and the Minkowski problem, J. Differential Geom., Volume 38 (1993), pp. 131-150 | Zbl | DOI

[12] E. Lutwak The Brunn-Minkowski-Firey Theory II: affine and geominimal surface area, Adv. Math., Volume 118 (1996), pp. 244-294 | Zbl | DOI

[13] Lutwak, E.; Oliker, V. On the regularity of solutions to a generalization of the Minkowski problem, J. Differential Geom., Volume 41 (1995), pp. 227-246 | Zbl | DOI

[14] Lutwak, E.; Yang, D.; Zhang, G. Lp- affine isoperimetric inequalities, J. Differential Geom., Volume 56 (2000), pp. 111-132 | DOI | Zbl

[15] Lutwak, E.; Yang, D.; G. Zhang Orlicz centroid bodies, J. Differential Geom., Volume 84 (2010), pp. 365-387 | Zbl | DOI

[16] Lutwak, E.; Yang, D.; Zhang, G. Orlicz projection bodies, Adv. Math., Volume 223 (2010), pp. 220-242 | Zbl | DOI

[17] Lutwak, E.; G. Zhang Blaschke Santaló inequalities, J. Differential Geom., Volume 47 (1997), pp. 1-16 | Zbl

[18] Schneider, R. Convex Bodies: The Brunn-Minkowski Theory, Second expanded edition, Cambridge University Press, Cambridge, 2014 | DOI | Zbl

[19] Xi, D.; Jin, H.; Leng, G. The Orlicz Brunn-Minkowski inequality, Adv. Math., Volume 260 (2014), pp. 350-374 | DOI

[20] Zhang, G. Y. Centered Bodies and Dual Mixed Volumes, Tran. Amer. Math. Soc., Volume 345 (1994), pp. 777-801 | DOI

[21] Zhu, B.; Zhou, J.; Xu, W. Dual Orlicz-Brunn-Minkowski theory , Adv. Math., Volume 264 (2014), pp. 700-725 | DOI

Cité par Sources :