Voir la notice de l'article provenant de la source International Scientific Research Publications
Ji, Lewen  1 ; Zeng, Zhenbing  2 ; Zhong, Jingjing  3
@article{JNSA_2018_11_6_a2, author = {Ji, Lewen and Zeng, Zhenbing and Zhong, Jingjing }, title = {On {Brunn-Minkowski} type inequality}, journal = {Journal of nonlinear sciences and its applications}, pages = {762-769}, publisher = {mathdoc}, volume = {11}, number = {6}, year = {2018}, doi = {10.22436/jnsa.011.06.03}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.06.03/} }
TY - JOUR AU - Ji, Lewen AU - Zeng, Zhenbing AU - Zhong, Jingjing TI - On Brunn-Minkowski type inequality JO - Journal of nonlinear sciences and its applications PY - 2018 SP - 762 EP - 769 VL - 11 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.06.03/ DO - 10.22436/jnsa.011.06.03 LA - en ID - JNSA_2018_11_6_a2 ER -
%0 Journal Article %A Ji, Lewen %A Zeng, Zhenbing %A Zhong, Jingjing %T On Brunn-Minkowski type inequality %J Journal of nonlinear sciences and its applications %D 2018 %P 762-769 %V 11 %N 6 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.06.03/ %R 10.22436/jnsa.011.06.03 %G en %F JNSA_2018_11_6_a2
Ji, Lewen ; Zeng, Zhenbing ; Zhong, Jingjing . On Brunn-Minkowski type inequality. Journal of nonlinear sciences and its applications, Tome 11 (2018) no. 6, p. 762-769. doi : 10.22436/jnsa.011.06.03. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.06.03/
[1] On the theory of mixed volumes.I. Extension of certain concepts in the theory of convex bodies, Mat. Sb., Volume 2 (1937), pp. 947-972
[2] The log-Brunn-Minkowski inequality, Adv. Math., Volume 231 (2012), pp. 1974-1997 | DOI
[3] The Lp Busemann-Petty centroid inequality, Adv. Math., Volume 167 (2002), pp. 128-141 | DOI
[4] On volume product inequalities for convex sets , Proc. Amer. Math. Soc., Volume 134 (2006), pp. 2393-2402 | DOI
[5] Mean cross-section measures of harmonic means of convex bodies , Pacific J. Math., Volume 11 (1961), pp. 1263-1266 | Zbl | DOI
[6] The Orlicz-Brunn-Minkowski theory: A general framework, additions, and inequalities, J. Differential Geom., Volume 97 (2014), pp. 427-476 | DOI | Zbl
[7] The even Orlicz-Minkowski problem , Adv. Math., Volume 224 (2010), pp. 2485-2510 | DOI | Zbl
[8] On Brunn-Minkowski type Inequalities for polar bodies, J. Geometric Anal., Volume 26 (2016), pp. 143-155 | Zbl | DOI
[9] A new proof of the Orlicz Busemann-Petty centroid inequality, Proc. Amer. Math. Soc., Volume 139 (2011), pp. 1473-1481 | Zbl | DOI
[10] Centroid Bodies and Dual Mixed Volumes, Proc. London Math. Soc., Volume 60 (1990), pp. 365-391 | DOI
[11] The Brunn-Minkowski-Firey theory. I. Mixed volumes and the Minkowski problem, J. Differential Geom., Volume 38 (1993), pp. 131-150 | Zbl | DOI
[12] The Brunn-Minkowski-Firey Theory II: affine and geominimal surface area, Adv. Math., Volume 118 (1996), pp. 244-294 | Zbl | DOI
[13] On the regularity of solutions to a generalization of the Minkowski problem, J. Differential Geom., Volume 41 (1995), pp. 227-246 | Zbl | DOI
[14] Lp- affine isoperimetric inequalities, J. Differential Geom., Volume 56 (2000), pp. 111-132 | DOI | Zbl
[15] Orlicz centroid bodies, J. Differential Geom., Volume 84 (2010), pp. 365-387 | Zbl | DOI
[16] Orlicz projection bodies, Adv. Math., Volume 223 (2010), pp. 220-242 | Zbl | DOI
[17] Blaschke Santaló inequalities, J. Differential Geom., Volume 47 (1997), pp. 1-16 | Zbl
[18] Convex Bodies: The Brunn-Minkowski Theory, Second expanded edition, Cambridge University Press, Cambridge, 2014 | DOI | Zbl
[19] The Orlicz Brunn-Minkowski inequality, Adv. Math., Volume 260 (2014), pp. 350-374 | DOI
[20] Centered Bodies and Dual Mixed Volumes, Tran. Amer. Math. Soc., Volume 345 (1994), pp. 777-801 | DOI
[21] Dual Orlicz-Brunn-Minkowski theory , Adv. Math., Volume 264 (2014), pp. 700-725 | DOI
Cité par Sources :