On $m$-skew complex symmetric operators
Journal of nonlinear sciences and its applications, Tome 11 (2018) no. 6, p. 734-745.

Voir la notice de l'article provenant de la source International Scientific Research Publications

In this paper, the definition of $m$-skew complex symmetric operators is introduced. Firstly, we prove that $\Delta_{m}^{-}(T)$ is complex symmetric with the conjugation $C$ and give some properties of $\Delta_{m}^{-}(T)$. Secondly, let $T$ be $m$-skew complex symmetric with conjugation $C$, if $n$ is odd, then $T^{n}$ is $m$-skew complex symmetric with conjugation $C$; if $n$ is even, with the assumption $T^{*}CTC=CTCT^{*}$, then $T^{n}$ is $m$-complex symmetric with conjugation $C$. Finally, we give some properties of $m$-skew complex symmetric operators.
DOI : 10.22436/jnsa.011.06.01
Classification : 47A11, 47B25
Keywords: \(m\)-skew complex symmetric operator, conjugation, spectral

Li, Haiying  1 ; Wang, Yaru  1

1 School of Mathematics and Information Science, Henan Normal University, Xinxiang 453007, Henan, P. R. China
@article{JNSA_2018_11_6_a0,
     author = {Li, Haiying  and Wang, Yaru },
     title = {On \(m\)-skew complex symmetric operators},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {734-745},
     publisher = {mathdoc},
     volume = {11},
     number = {6},
     year = {2018},
     doi = {10.22436/jnsa.011.06.01},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.06.01/}
}
TY  - JOUR
AU  - Li, Haiying 
AU  - Wang, Yaru 
TI  - On \(m\)-skew complex symmetric operators
JO  - Journal of nonlinear sciences and its applications
PY  - 2018
SP  - 734
EP  - 745
VL  - 11
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.06.01/
DO  - 10.22436/jnsa.011.06.01
LA  - en
ID  - JNSA_2018_11_6_a0
ER  - 
%0 Journal Article
%A Li, Haiying 
%A Wang, Yaru 
%T On \(m\)-skew complex symmetric operators
%J Journal of nonlinear sciences and its applications
%D 2018
%P 734-745
%V 11
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.06.01/
%R 10.22436/jnsa.011.06.01
%G en
%F JNSA_2018_11_6_a0
Li, Haiying ; Wang, Yaru . On \(m\)-skew complex symmetric operators. Journal of nonlinear sciences and its applications, Tome 11 (2018) no. 6, p. 734-745. doi : 10.22436/jnsa.011.06.01. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.06.01/

[1] Benhida, C.; Kliś-Garlicka, K.; Ptak, M. Skew-symmetric operators and reflexivity, arXiv, Volume 2016 (2016), pp. 1-7 | Zbl | DOI

[2] Cho, M.; Ko, E.; Lee, J. E. On m-complex symmetric operators, Mediter. J. Math., Volume 13 (2016), pp. 2025-2038 | DOI

[3] Cho, M.; Ko, E.; Lee, J. E. On m-complex symmetric operators II, Mediter. J. Math., Volume 13 (2016), pp. 3255-3264 | Zbl | DOI

[4] Cho, M.; Ko, E.; Lee, J. E. Properties of m-complex symmetric operators, Stud. Univ. Babeş-Bolyai Math., Volume 62 (2017), pp. 233-248 | Zbl | DOI

[5] Conway, J. B. A course in functional analysis, Second edition, Springer-Verlag, New York (1990) | DOI

[6] Garcia, S. R.; Prodan, E.; Putinar, M. Mathematical and physical aspects of complex symmetric operators, J. Phys. A, Volume 2014 (2014), pp. 1-54 | DOI

[7] Garcia, S. R.; Putinar, M. Complex symmetric operators and applications, Trans. Amer. Math. Soc., Volume 358 (2006), pp. 1285-1315 | DOI

[8] Hai, P. V.; Khoi, L. H. Complex symmetry of weighted composition operators on the Fock space, J. Math. Anal. Appl., Volume 433 (2016), pp. 1757-1771 | Zbl | DOI

[9] Halmos, P. R. A Hilbert Space Problem Book, Second edition, Springer-Verlag, New York-Berlin, 1982

[10] Helton, J. W. Operators with a representation as multiplication by \(x\) on a Sobolev space, Colloquia Math. Soc. János Bolyai, North-Holland, Amsterdam, 1972

[11] Jung, S.; Ko, E.; Lee, J. E. On complex symmetric operator matrices, J. Math. Anal. Appl., Volume 406 (2013), pp. 373-385 | DOI

[12] Jung, S.; Ko, E.; Lee, M.; Lee, J. On local spectral properties of complex symmetric operators, J. Math. Anal. Appl., Volume 379 (2011), pp. 325-333 | DOI

[13] Ko, E.; Ko, E.; Lee, J. E. Skew complex symmetric operator and Weyl type theorems, Bull. Korean Math. Soc., Volume 52 (2015), pp. 1269-1283 | DOI | Zbl

[14] Ko, E.; Lee, J. E. On complex symmetric Toeplitz operators, J. Math. Anal. Appl., Volume 434 (2016), pp. 20-34 | DOI

[15] Wang, X.; Gao, Z. A note on Aluthge transforms of complex symmetric operators and applications, Integral Equations Operator Theory, Volume 65 (2009), pp. 573-580 | DOI | Zbl

Cité par Sources :