Voir la notice de l'article provenant de la source International Scientific Research Publications
Li, Haiying  1 ; Wang, Yaru  1
@article{JNSA_2018_11_6_a0, author = {Li, Haiying and Wang, Yaru }, title = {On \(m\)-skew complex symmetric operators}, journal = {Journal of nonlinear sciences and its applications}, pages = {734-745}, publisher = {mathdoc}, volume = {11}, number = {6}, year = {2018}, doi = {10.22436/jnsa.011.06.01}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.06.01/} }
TY - JOUR AU - Li, Haiying AU - Wang, Yaru TI - On \(m\)-skew complex symmetric operators JO - Journal of nonlinear sciences and its applications PY - 2018 SP - 734 EP - 745 VL - 11 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.06.01/ DO - 10.22436/jnsa.011.06.01 LA - en ID - JNSA_2018_11_6_a0 ER -
%0 Journal Article %A Li, Haiying %A Wang, Yaru %T On \(m\)-skew complex symmetric operators %J Journal of nonlinear sciences and its applications %D 2018 %P 734-745 %V 11 %N 6 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.06.01/ %R 10.22436/jnsa.011.06.01 %G en %F JNSA_2018_11_6_a0
Li, Haiying ; Wang, Yaru . On \(m\)-skew complex symmetric operators. Journal of nonlinear sciences and its applications, Tome 11 (2018) no. 6, p. 734-745. doi : 10.22436/jnsa.011.06.01. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.06.01/
[1] Skew-symmetric operators and reflexivity, arXiv, Volume 2016 (2016), pp. 1-7 | Zbl | DOI
[2] On m-complex symmetric operators, Mediter. J. Math., Volume 13 (2016), pp. 2025-2038 | DOI
[3] On m-complex symmetric operators II, Mediter. J. Math., Volume 13 (2016), pp. 3255-3264 | Zbl | DOI
[4] Properties of m-complex symmetric operators, Stud. Univ. Babeş-Bolyai Math., Volume 62 (2017), pp. 233-248 | Zbl | DOI
[5] A course in functional analysis, Second edition, Springer-Verlag, New York (1990) | DOI
[6] Mathematical and physical aspects of complex symmetric operators, J. Phys. A, Volume 2014 (2014), pp. 1-54 | DOI
[7] Complex symmetric operators and applications, Trans. Amer. Math. Soc., Volume 358 (2006), pp. 1285-1315 | DOI
[8] Complex symmetry of weighted composition operators on the Fock space, J. Math. Anal. Appl., Volume 433 (2016), pp. 1757-1771 | Zbl | DOI
[9] A Hilbert Space Problem Book, Second edition, Springer-Verlag, New York-Berlin, 1982
[10] Operators with a representation as multiplication by \(x\) on a Sobolev space, Colloquia Math. Soc. János Bolyai, North-Holland, Amsterdam, 1972
[11] On complex symmetric operator matrices, J. Math. Anal. Appl., Volume 406 (2013), pp. 373-385 | DOI
[12] On local spectral properties of complex symmetric operators, J. Math. Anal. Appl., Volume 379 (2011), pp. 325-333 | DOI
[13] Skew complex symmetric operator and Weyl type theorems, Bull. Korean Math. Soc., Volume 52 (2015), pp. 1269-1283 | DOI | Zbl
[14] On complex symmetric Toeplitz operators, J. Math. Anal. Appl., Volume 434 (2016), pp. 20-34 | DOI
[15] A note on Aluthge transforms of complex symmetric operators and applications, Integral Equations Operator Theory, Volume 65 (2009), pp. 573-580 | DOI | Zbl
Cité par Sources :