Voir la notice de l'article provenant de la source International Scientific Research Publications
Touati, Ali Bey 1 ; Benaon, Laila  1 ; Zeghdoudi, Halim  1
@article{JNSA_2018_11_5_a11, author = { Touati, Ali Bey and Benaon, Laila and Zeghdoudi, Halim }, title = {On spectral gap for multicolored disordered lattice gas of exclusion processes}, journal = {Journal of nonlinear sciences and its applications}, pages = {723-733}, publisher = {mathdoc}, volume = {11}, number = {5}, year = {2018}, doi = {10.22436/jnsa.011.05.12}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.05.12/} }
TY - JOUR AU - Touati, Ali Bey AU - Benaon, Laila AU - Zeghdoudi, Halim TI - On spectral gap for multicolored disordered lattice gas of exclusion processes JO - Journal of nonlinear sciences and its applications PY - 2018 SP - 723 EP - 733 VL - 11 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.05.12/ DO - 10.22436/jnsa.011.05.12 LA - en ID - JNSA_2018_11_5_a11 ER -
%0 Journal Article %A Touati, Ali Bey %A Benaon, Laila %A Zeghdoudi, Halim %T On spectral gap for multicolored disordered lattice gas of exclusion processes %J Journal of nonlinear sciences and its applications %D 2018 %P 723-733 %V 11 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.05.12/ %R 10.22436/jnsa.011.05.12 %G en %F JNSA_2018_11_5_a11
Touati, Ali Bey; Benaon, Laila ; Zeghdoudi, Halim . On spectral gap for multicolored disordered lattice gas of exclusion processes. Journal of nonlinear sciences and its applications, Tome 11 (2018) no. 5, p. 723-733. doi : 10.22436/jnsa.011.05.12. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.05.12/
[1] Computation of spectral gap for a colored disordered lattice gas, Afr. Stat., Volume 6 (2011), pp. 371-380 | DOI | Zbl
[2] Spectral gap estimates for interacting particle systems via a Bochner-type identity, J. Funct. Anal., Volume 232 (2006), pp. 222-258 | DOI | Zbl
[3] On the spectral gap of Kawasaki dynamics under a mixing condition revisited, Probabilistic techniques in equilibrium and nonequilibrium statistical physics, J. Math. Phys., Volume 41 (2000), pp. 1391-1423 | DOI | Zbl
[4] Spectral gap inequalities in product spaces with conservation laws, Stochastic analysis on large scale interacting systems, Adv. Stud. Pure Math., Math. Soc. Japan, Tokyo (2004), pp. 53-88 | Zbl
[5] A small step towards the hydrodynamic limit of a colored disordered lattice gas, C. R. Math. Acad. Sci. Paris, Volume 339 (2004), pp. 507-511 | DOI | Zbl
[6] Spectral gap inequality for a colored disordered lattice gas, Sminaire de Probabilits XLI, Lecture Notes in Math., Springer, Volume 2008 (2008), pp. 1-18 | DOI | Zbl
[7] Around multicolour disordered lattice gas, J. Stat. Phys., Volume 123 (2006), pp. 181-192 | Zbl | DOI
[8] Hydrodynamic limit of a disordered lattice gas, Probab. Theory Related Fields, Volume 127 (2003), pp. 535-608 | DOI
[9] Spectral gap and logarithmic Sobolev inequality for Kawasaki and Glauber dynamics, Comm. Math. Phys., Volume 156 (1993), pp. 399-433 | DOI | Zbl
[10] Large deviations of the empirical current for the boundary driven Kawasaki process with long range interaction, ALEA Lat. Am. J. Probab. Math. Stat., Volume 11 (2014), pp. 643-678 | Zbl
[11] Computation for the Canonical Measures of a Colored Disordered Lattice Gas and Spectral Gap, J. Math. Phys., Volume 2009 (2009), pp. 1-8 | Zbl | DOI
[12] Gibbs’s Measures of a Multi-Colored Disordered Lattice Gas, Afr. J. Math. Phys., Volume 10 (2011), pp. 49-54 | Zbl
Cité par Sources :