On spectral gap for multicolored disordered lattice gas of exclusion processes
Journal of nonlinear sciences and its applications, Tome 11 (2018) no. 5, p. 723-733.

Voir la notice de l'article provenant de la source International Scientific Research Publications

We consider a system of multicolored disordered lattice gas in a volume $\Lambda$ of $\mathbb{Z}^{d}$ driven by a disordered Markov generator similar to that of Faggionato and Martinelli [A. Faggionato, F. Martinelli, Probab. Theory Related Fields, $\textbf{127}$ (2003), 535--608]. The aim of our work is to give a new and elementary computation of the spectral gap of multicolored disordered lattice gas which is an important step towards obtaining the hydrodynamic limit.
DOI : 10.22436/jnsa.011.05.12
Classification : 60K35, 60F10, 60J25
Keywords: A simple exclusion, Markov generator, spectral gap

Touati, Ali Bey 1 ; Benaon, Laila  1 ; Zeghdoudi, Halim  1

1 LaPS laboratory, Badji-Mokhtar University, Box 12, Annaba, 23000, Algeria
@article{JNSA_2018_11_5_a11,
     author = { Touati, Ali Bey and Benaon, Laila  and Zeghdoudi, Halim },
     title = {On spectral gap for multicolored disordered lattice gas of exclusion processes},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {723-733},
     publisher = {mathdoc},
     volume = {11},
     number = {5},
     year = {2018},
     doi = {10.22436/jnsa.011.05.12},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.05.12/}
}
TY  - JOUR
AU  -  Touati, Ali Bey
AU  - Benaon, Laila 
AU  - Zeghdoudi, Halim 
TI  - On spectral gap for multicolored disordered lattice gas of exclusion processes
JO  - Journal of nonlinear sciences and its applications
PY  - 2018
SP  - 723
EP  - 733
VL  - 11
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.05.12/
DO  - 10.22436/jnsa.011.05.12
LA  - en
ID  - JNSA_2018_11_5_a11
ER  - 
%0 Journal Article
%A  Touati, Ali Bey
%A Benaon, Laila 
%A Zeghdoudi, Halim 
%T On spectral gap for multicolored disordered lattice gas of exclusion processes
%J Journal of nonlinear sciences and its applications
%D 2018
%P 723-733
%V 11
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.05.12/
%R 10.22436/jnsa.011.05.12
%G en
%F JNSA_2018_11_5_a11
 Touati, Ali Bey; Benaon, Laila ; Zeghdoudi, Halim . On spectral gap for multicolored disordered lattice gas of exclusion processes. Journal of nonlinear sciences and its applications, Tome 11 (2018) no. 5, p. 723-733. doi : 10.22436/jnsa.011.05.12. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.05.12/

[1] Ali, B. T.; Zeghdoudi, H.; Boutabia, H. Computation of spectral gap for a colored disordered lattice gas, Afr. Stat., Volume 6 (2011), pp. 371-380 | DOI | Zbl

[2] Boudou, A.-S.; Caputo, P.; Pra, P. Dai; G. Posta Spectral gap estimates for interacting particle systems via a Bochner-type identity, J. Funct. Anal., Volume 232 (2006), pp. 222-258 | DOI | Zbl

[3] Cancrini, N.; Martinelli, F. On the spectral gap of Kawasaki dynamics under a mixing condition revisited, Probabilistic techniques in equilibrium and nonequilibrium statistical physics, J. Math. Phys., Volume 41 (2000), pp. 1391-1423 | DOI | Zbl

[4] Caputo, P. Spectral gap inequalities in product spaces with conservation laws, Stochastic analysis on large scale interacting systems, Adv. Stud. Pure Math., Math. Soc. Japan, Tokyo (2004), pp. 53-88 | Zbl

[5] Dermoune, A.; Heinrich, P. A small step towards the hydrodynamic limit of a colored disordered lattice gas, C. R. Math. Acad. Sci. Paris, Volume 339 (2004), pp. 507-511 | DOI | Zbl

[6] Dermoune, A.; Heinrich, P. Spectral gap inequality for a colored disordered lattice gas, Sminaire de Probabilits XLI, Lecture Notes in Math., Springer, Volume 2008 (2008), pp. 1-18 | DOI | Zbl

[7] Dermoune, A.; Martinez, S. Around multicolour disordered lattice gas, J. Stat. Phys., Volume 123 (2006), pp. 181-192 | Zbl | DOI

[8] Faggionato, A.; F. Martinelli Hydrodynamic limit of a disordered lattice gas, Probab. Theory Related Fields, Volume 127 (2003), pp. 535-608 | DOI

[9] Lu, S. L.; Yau, H.-T. Spectral gap and logarithmic Sobolev inequality for Kawasaki and Glauber dynamics, Comm. Math. Phys., Volume 156 (1993), pp. 399-433 | DOI | Zbl

[10] M. Mourragui Large deviations of the empirical current for the boundary driven Kawasaki process with long range interaction, ALEA Lat. Am. J. Probab. Math. Stat., Volume 11 (2014), pp. 643-678 | Zbl

[11] Zeghdoudi, H.; H. Boutabia Computation for the Canonical Measures of a Colored Disordered Lattice Gas and Spectral Gap, J. Math. Phys., Volume 2009 (2009), pp. 1-8 | Zbl | DOI

[12] Zeghdoudi, H.; Boutabia, H. Gibbs’s Measures of a Multi-Colored Disordered Lattice Gas, Afr. J. Math. Phys., Volume 10 (2011), pp. 49-54 | Zbl

Cité par Sources :