Multiple positive almost periodic solutions for some nonlinear integral equations
Journal of nonlinear sciences and its applications, Tome 11 (2018) no. 5, p. 713-722.

Voir la notice de l'article provenant de la source International Scientific Research Publications

This paper is concerned with the existence of multiple positive almost periodic solutions for a nonlinear integral equation. By using Avery-Henderson and Leggett-Williams multiple fixed point theorems on cones, the existence theorems of multiple positive almost periodic solutions for the addressed integral equation are established under some sufficient assumptions. An example is given to illustrate our results.
DOI : 10.22436/jnsa.011.05.11
Classification : 45G10, 34K14
Keywords: Almost periodic, multiple solutions, integral equation

Ding, Hui-Sheng  1 ; Nieto, Juan J.  2 ; Zou, Qiu-Feng  1

1 College of Mathematics and Information Science, Jiangxi Normal University, Nanchang, Jiangxi 330022, People’s Republic of China
2 Departamento de Análisis Matemático, Facultad de Matemáticas, Universidad de Santiago de Compostela 15782, Santiago de Compostela, Spain
@article{JNSA_2018_11_5_a10,
     author = {Ding, Hui-Sheng  and Nieto, Juan J.  and Zou, Qiu-Feng },
     title = {Multiple positive almost periodic solutions for some nonlinear integral equations},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {713-722},
     publisher = {mathdoc},
     volume = {11},
     number = {5},
     year = {2018},
     doi = {10.22436/jnsa.011.05.11},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.05.11/}
}
TY  - JOUR
AU  - Ding, Hui-Sheng 
AU  - Nieto, Juan J. 
AU  - Zou, Qiu-Feng 
TI  - Multiple positive almost periodic solutions for some nonlinear integral equations
JO  - Journal of nonlinear sciences and its applications
PY  - 2018
SP  - 713
EP  - 722
VL  - 11
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.05.11/
DO  - 10.22436/jnsa.011.05.11
LA  - en
ID  - JNSA_2018_11_5_a10
ER  - 
%0 Journal Article
%A Ding, Hui-Sheng 
%A Nieto, Juan J. 
%A Zou, Qiu-Feng 
%T Multiple positive almost periodic solutions for some nonlinear integral equations
%J Journal of nonlinear sciences and its applications
%D 2018
%P 713-722
%V 11
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.05.11/
%R 10.22436/jnsa.011.05.11
%G en
%F JNSA_2018_11_5_a10
Ding, Hui-Sheng ; Nieto, Juan J. ; Zou, Qiu-Feng . Multiple positive almost periodic solutions for some nonlinear integral equations. Journal of nonlinear sciences and its applications, Tome 11 (2018) no. 5, p. 713-722. doi : 10.22436/jnsa.011.05.11. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.05.11/

[1] Agarwal, R. P.; O’Regan, D. Existence theory for single and multiple periodic and almost periodic solutions of nonlinear integral equations, Nonlinear Oscil., Volume 4 (2001), pp. 2-15 | Zbl

[2] Dads, E. Ait; Cieutat, P.; Lhachimi, L. Existence of positive almost periodic or ergodic solutions for some neutral nonlinear integral equations, Differential Integral Equations , Volume 22 (2009), pp. 1075-1096 | Zbl

[3] Dads, E. Ait; Cieutat, P.; Lhachimi, L. Positive pseudo almost periodic solutions for some nonlinear infinite delay integral equations, Math. Comput. Modelling, Volume 49 (2009), pp. 721-739 | DOI

[4] Alvarez, E.; Lizama, C. Weighted pseudo almost periodic solutions to a class of semilinear integro-differential equations in Banach spaces, Adv. Difference Equ., Volume 2015 (2015), pp. 1-18 | Zbl | DOI

[5] Alvarez, E.; Lizama, C.; Ponce, R. Weighted pseudo antiperiodic solutions for fractional integro-differential equations in Banach spaces, Appl. Math. Comput., Volume 259 (2015), pp. 164-172 | DOI

[6] Alzabut, J. O.; Nieto, J. J.; Stamov, G. T. Existence and exponential stability of positive almost periodic solutions for a model of hematopoiesis, Bound. Value Probl., Volume 2009 (2009), pp. 1-10 | DOI

[7] Avery, R. I.; Henderson, J. Two positive fixed points of nonlinear operators on ordered Banach spaces, Comm. Appl. Nonlinear Anal., Volume 8 (2001), pp. 27-36

[8] Bellour, A.; Dads, E. Ait Periodic solutions for nonlinear neutral delay integro-differential equations, Electron. J. Differential Equations, Volume 2015 (2015 ), pp. 1-9

[9] Corduneanu, C. Almost Periodic Functions, Second edition, AMS Chelsea Publishing, New York (1989)

[10] Ding, H.-S.; Chen, Y.-Y.; N’Guérékata, G. M. \(C^n\)-almost periodic and almost periodic solutions for some nonlinear integral equation, Electron. J. Qual. Theory Differ. Equ., Volume 2012 (2012 ), pp. 1-13

[11] Ding, H.-S.; Liu, Q.-L.; N’Guérékata, G. M. Equi-asymptotically almost periodic functions and applications to functional integral equations, Electron. J. Differential Equations, Volume 2013 (2013 ), pp. 1-9 | Zbl

[12] Ding, H.-S.; Liu, Q.-L.; Nieto, J. J. Existence of positive almost periodic solutions to a class of hematopoiesis model, Appl. Math. Model., Volume 40 (2016), pp. 3289-3297 | DOI

[13] Ding, H.-S.; N’Guérékata, G. M. A note on the existence of positive bounded solutions for an epidemic model, Appl. Math. Lett., Volume 26 (2013), pp. 881-885 | DOI | Zbl

[14] Leggett, R. W.; Williams, L. R. Multiple positive fixed points of nonlinear operators on ordered Banach spaces, Indiana Univ. Math. J., Volume 28 (1979), pp. 673-688 | DOI

[15] Long, W.; Pan, W.-H. Asymptotically almost periodic solution to a class of Volterra difference equations, Adv. Difference Equ., Volume 2012 (2012 ), pp. 1-12 | Zbl | DOI

[16] Long, W.; Zheng, X.-J.; L. Li Existence of periodic solutions for a class of functional integral equations, Electron. J. Qual. Theory Differ. Equ., Volume 2012 (2012 ), pp. 1-11

[17] O’Regan, D.; Meehan, M. Periodic and almost periodic solutions of integral equations, Appl. Math. Comput., Volume 105 (1999), pp. 121-136 | DOI

[18] Sadrati, A.; A. Zertiti Existence and uniqueness of positive almost periodic solutions for systems of nonlinear delay integral equations, Electron. J. Differential Equations, Volume 2015 (2015 ), pp. 1-12 | Zbl

Cité par Sources :