Voir la notice de l'article provenant de la source International Scientific Research Publications
Wu, Huanrong  1 ; Li, Qingguo  1 ; Yu, Bin  1
@article{JNSA_2018_11_5_a9, author = {Wu, Huanrong and Li, Qingguo and Yu, Bin }, title = {A topology on lattice-ordered groups}, journal = {Journal of nonlinear sciences and its applications}, pages = {701-712}, publisher = {mathdoc}, volume = {11}, number = {5}, year = {2018}, doi = {10.22436/jnsa.011.05.10}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.05.10/} }
TY - JOUR AU - Wu, Huanrong AU - Li, Qingguo AU - Yu, Bin TI - A topology on lattice-ordered groups JO - Journal of nonlinear sciences and its applications PY - 2018 SP - 701 EP - 712 VL - 11 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.05.10/ DO - 10.22436/jnsa.011.05.10 LA - en ID - JNSA_2018_11_5_a9 ER -
%0 Journal Article %A Wu, Huanrong %A Li, Qingguo %A Yu, Bin %T A topology on lattice-ordered groups %J Journal of nonlinear sciences and its applications %D 2018 %P 701-712 %V 11 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.05.10/ %R 10.22436/jnsa.011.05.10 %G en %F JNSA_2018_11_5_a9
Wu, Huanrong ; Li, Qingguo ; Yu, Bin . A topology on lattice-ordered groups. Journal of nonlinear sciences and its applications, Tome 11 (2018) no. 5, p. 701-712. doi : 10.22436/jnsa.011.05.10. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.05.10/
[1] A domain-theoretic model of nominally-typed object-oriented programming, Electron. Notes Theor. Comput. Sci., Volume 301 (2014), pp. 3-19 | Zbl | DOI
[2] Domain theory for modeling oop: A summary, arXive, Volume 2014 (2014 ), pp. 1-15
[3] Domains and lambda-calculi , Cambridge University Press, Cambridge, 1998 | DOI
[4] Topological Groups and Related Structures, Atlantis Press/World scintific, Paris, 2008 | DOI
[5] Topological lattice-ordered groups, Pacific J. Math., Volume 83 (1979), pp. 1-26 | Zbl
[6] Convergence and cauchy structures on lattice ordered groups, Trans. Amer. Math. Soc., Volume 259 (1980), pp. 357-392 | DOI
[7] Truncated abelian lattice-ordered groups I: The pointed (Yosida) representation, Topology Appl., Volume 162 (2014), pp. 43-65 | DOI | Zbl
[8] Epi-topology and epi-convergence for archimedean lattice-ordered groups with unit, Appl. Categ. Structures, Volume 15 (2007), pp. 81-107 | Zbl | DOI
[9] Lattice-ordered groups, Ann. of Math., Volume 43 (1942), pp. 298-331
[10] Lattice theory , American Mathematical Society, Providence, 1967
[11] The left adjoint of spec from a category of lattice-ordered groups, J. Appl. Log., Volume 15 (2016), pp. 1-15 | Zbl | DOI
[12] Partially ordered abelian groups , Ann. of Math., Volume 41 (1940), pp. 465-473
[13] Introduction to lattices and order, Second edition, Cambridge university press, New York, 2002 | DOI
[14] Domains for computation in mathematics, physics and exact real arithmetic, Bull. Symbolic Logic, Volume 3 (1997), pp. 401-452 | DOI | Zbl
[15] Partially ordered algebraic systems, Dover publication, Inc., New York, 1963
[16] Riesz vector spaces and Riesz algebras , Séminaire Dubreil. Algèbre et théorie des nombres, Volume 19 (1965/66), pp. 1-9
[17] Continuous Lattices and Domains, Cambridge University Press, Cambridge, 2003 | DOI
[18] Non-Hausdorff topology and domain theory [On the cover: Selected topics in point-set topology], Cambridge University Press, Cambridge, 2013 | DOI
[19] General lattice theory, Second edition, Birkhäuser Verlag, Basel, Boston, Berlin, 2003
[20] The Categorical Equivalence Between Algebraic Domains and F-Augmented Closure Spaces, Order, Volume 32 (2015), pp. 101-116 | Zbl | DOI
[21] A topology on lattice ordered groups, Proc. Amer. Math. Soc., Volume 126 (1998), pp. 2593-2597 | DOI
[22] Locally solid topological lattice-ordered groups, Arch. Math. (Brno), Volume 51 (2015), pp. 107-128 | DOI | Zbl
[23] All cartesian closed categories of quasicontinuous domains consist of domains, Theoret. Comput. Sci., Volume 594 (2015), pp. 143-150 | Zbl | DOI
[24] The theory of lattice-ordered groups, Springer Science and Business Media, Dordrecht, 2013
[25] p-Topologicalness and p-regularity for lattice-valued convergence spaces, Fuzzy Sets and Systems, Volume 238 (2014), pp. 26-45 | Zbl | DOI
[26] The lower and upper p-topological (p-regular) modifications for lattice-valued convergence space, Fuzzy Sets and Systems, Volume 282 (2016), pp. 47-61 | DOI
[27] Topology, Second edition, Prentice Hall, Inc., Upper Saddle River, NJ, 2000
[28] Post-graduate lecture notes in advanced domain theory, Dept. of Computer Science, Univ. of Edinburgh, 1981
[29] Theories of programming languages, Cambridge University Press, Cambridge, 2009
[30] A domain-theoretic approach to fuzzy metric spaces, Topology Appl., Volume 163 (2014), pp. 149-159 | Zbl | DOI
[31] Outline of a mathematical theory of computation, Oxford University Computing Laboratory, Programming Research Group, Oxford, 1970
[32] Continuous lattices, Lecture Notes in Mathematics, Springer, Berlin, 1972 | DOI
[33] Data types as lattices, Lecture Notes in Mathematics, Springer, Berlin, 1975 | DOI
[34] A type-theoretical alternative to iswim, cuch, owhy, Theoret. Comput. Sci., Volume 121 (1993), pp. 411-440 | DOI
[35] On the largest cartesian closed category of stable domains, Theoret. Comput. Sci., Volume 669 (2017), pp. 22-32 | DOI | Zbl
[36] l-groups and bézout domains, PHD thesis, Von der Fakultat Math. und Physik der Universitat Stuttgart, 2006
[37] Bézout domains with nonzero unit radical, Comm. Algebra, Volume 38 (2010), pp. 1084-1092 | DOI | Zbl
[38] T\(\omega\) as a stable universal domain, Electron. Notes Theor. Comput. Sci., Volume 301 (2014), pp. 189-202 | Zbl | DOI
Cité par Sources :