A topology on lattice-ordered groups
Journal of nonlinear sciences and its applications, Tome 11 (2018) no. 5, p. 701-712.

Voir la notice de l'article provenant de la source International Scientific Research Publications

We introduce the concept of the strong-positive cone in a lattice-ordered group $(G,\leq,\cdot)$ and define the continuous lattice-ordered group. We also investigate the $C$-topology and bi-$C$-topology given on a lattice-ordered group. The main results obtained in this paper are as follows: (1) $(G,\leq,\cdot)$ is a continuous lattice-ordered group if and only if $(G,\leq)$ is a continuous poset; (2) for the bi-$C$-topology $\tau$ in a continuous lattice-ordered group $(G,\leq,\cdot)$, $(G,\cdot,\tau)$ is a topological group and $(G,\leq,\tau)$ is a topological lattice.
DOI : 10.22436/jnsa.011.05.10
Classification : 06F15, 06B35, 54H11
Keywords: Lattice-ordered group, continuous, topology, topological group, topological lattice

Wu, Huanrong  1 ; Li, Qingguo  1 ; Yu, Bin  1

1 College of Mathematics and Econometrics, Hunan University, Changsha 410082, China
@article{JNSA_2018_11_5_a9,
     author = {Wu, Huanrong  and Li, Qingguo  and Yu, Bin },
     title = {A topology on lattice-ordered groups},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {701-712},
     publisher = {mathdoc},
     volume = {11},
     number = {5},
     year = {2018},
     doi = {10.22436/jnsa.011.05.10},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.05.10/}
}
TY  - JOUR
AU  - Wu, Huanrong 
AU  - Li, Qingguo 
AU  - Yu, Bin 
TI  - A topology on lattice-ordered groups
JO  - Journal of nonlinear sciences and its applications
PY  - 2018
SP  - 701
EP  - 712
VL  - 11
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.05.10/
DO  - 10.22436/jnsa.011.05.10
LA  - en
ID  - JNSA_2018_11_5_a9
ER  - 
%0 Journal Article
%A Wu, Huanrong 
%A Li, Qingguo 
%A Yu, Bin 
%T A topology on lattice-ordered groups
%J Journal of nonlinear sciences and its applications
%D 2018
%P 701-712
%V 11
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.05.10/
%R 10.22436/jnsa.011.05.10
%G en
%F JNSA_2018_11_5_a9
Wu, Huanrong ; Li, Qingguo ; Yu, Bin . A topology on lattice-ordered groups. Journal of nonlinear sciences and its applications, Tome 11 (2018) no. 5, p. 701-712. doi : 10.22436/jnsa.011.05.10. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.05.10/

[1] Abdelgawad, M. A. A domain-theoretic model of nominally-typed object-oriented programming, Electron. Notes Theor. Comput. Sci., Volume 301 (2014), pp. 3-19 | Zbl | DOI

[2] Abdelgawad, M. A.; Domain theory for modeling oop: A summary, arXive, Volume 2014 (2014 ), pp. 1-15

[3] Amadio, R. M.; Curien, P.-L. Domains and lambda-calculi , Cambridge University Press, Cambridge, 1998 | DOI

[4] Arhangel’skii, A.; Tkachenko, M. Topological Groups and Related Structures, Atlantis Press/World scintific, Paris, 2008 | DOI

[5] R. N. Ball Topological lattice-ordered groups, Pacific J. Math., Volume 83 (1979), pp. 1-26 | Zbl

[6] Ball, R. N. Convergence and cauchy structures on lattice ordered groups, Trans. Amer. Math. Soc., Volume 259 (1980), pp. 357-392 | DOI

[7] Ball, R. N.; Truncated abelian lattice-ordered groups I: The pointed (Yosida) representation, Topology Appl., Volume 162 (2014), pp. 43-65 | DOI | Zbl

[8] Ball, R. N.; Hager, A. W. Epi-topology and epi-convergence for archimedean lattice-ordered groups with unit, Appl. Categ. Structures, Volume 15 (2007), pp. 81-107 | Zbl | DOI

[9] G. Birkhoff Lattice-ordered groups, Ann. of Math., Volume 43 (1942), pp. 298-331

[10] Birkhoff, G. Lattice theory , American Mathematical Society, Providence, 1967

[11] Castiglioni, J. L.; Martín, H. J. San The left adjoint of spec from a category of lattice-ordered groups, J. Appl. Log., Volume 15 (2016), pp. 1-15 | Zbl | DOI

[12] Clifford, A. H. Partially ordered abelian groups , Ann. of Math., Volume 41 (1940), pp. 465-473

[13] Davey, B. A.; Priestley, H. A. Introduction to lattices and order, Second edition, Cambridge university press, New York, 2002 | DOI

[14] A. Edalat Domains for computation in mathematics, physics and exact real arithmetic, Bull. Symbolic Logic, Volume 3 (1997), pp. 401-452 | DOI | Zbl

[15] Fuchs, L. Partially ordered algebraic systems, Dover publication, Inc., New York, 1963

[16] Fuchs, L. Riesz vector spaces and Riesz algebras , Séminaire Dubreil. Algèbre et théorie des nombres, Volume 19 (1965/66), pp. 1-9

[17] Gierz, G.; Hofmann, K. H.; Keimel, K.; Lawson, J. D.; Mislove, M.; D. S. Scott Continuous Lattices and Domains, Cambridge University Press, Cambridge, 2003 | DOI

[18] Goubault-Larrecq, J. Non-Hausdorff topology and domain theory [On the cover: Selected topics in point-set topology], Cambridge University Press, Cambridge, 2013 | DOI

[19] Grätzer, G. General lattice theory, Second edition, Birkhäuser Verlag, Basel, Boston, Berlin, 2003

[20] Guo, L.; Q. Li The Categorical Equivalence Between Algebraic Domains and F-Augmented Closure Spaces, Order, Volume 32 (2015), pp. 101-116 | Zbl | DOI

[21] Gusić, I. A topology on lattice ordered groups, Proc. Amer. Math. Soc., Volume 126 (1998), pp. 2593-2597 | DOI

[22] Hong, L. Locally solid topological lattice-ordered groups, Arch. Math. (Brno), Volume 51 (2015), pp. 107-128 | DOI | Zbl

[23] Jia, X.; Jung, A.; Kou, H.; Li, Q.; Zhao, H. All cartesian closed categories of quasicontinuous domains consist of domains, Theoret. Comput. Sci., Volume 594 (2015), pp. 143-150 | Zbl | DOI

[24] Kopytov, V. M.; Medvedev, N. Y. The theory of lattice-ordered groups, Springer Science and Business Media, Dordrecht, 2013

[25] Li, L.; Q. Jin p-Topologicalness and p-regularity for lattice-valued convergence spaces, Fuzzy Sets and Systems, Volume 238 (2014), pp. 26-45 | Zbl | DOI

[26] Li, L.; Jin, Q.; Meng, G.; Hu, K. The lower and upper p-topological (p-regular) modifications for lattice-valued convergence space, Fuzzy Sets and Systems, Volume 282 (2016), pp. 47-61 | DOI

[27] Munkres, J. R. Topology, Second edition, Prentice Hall, Inc., Upper Saddle River, NJ, 2000

[28] Plotkin, G. D. Post-graduate lecture notes in advanced domain theory, Dept. of Computer Science, Univ. of Edinburgh, 1981

[29] J. C. Reynolds Theories of programming languages, Cambridge University Press, Cambridge, 2009

[30] Ricarte, L. A.; Romaguera, S. A domain-theoretic approach to fuzzy metric spaces, Topology Appl., Volume 163 (2014), pp. 149-159 | Zbl | DOI

[31] D. S. Scott Outline of a mathematical theory of computation, Oxford University Computing Laboratory, Programming Research Group, Oxford, 1970

[32] Scott, D. S. Continuous lattices, Lecture Notes in Mathematics, Springer, Berlin, 1972 | DOI

[33] Scott, D. S. Data types as lattices, Lecture Notes in Mathematics, Springer, Berlin, 1975 | DOI

[34] D. S. Scott A type-theoretical alternative to iswim, cuch, owhy, Theoret. Comput. Sci., Volume 121 (1993), pp. 411-440 | DOI

[35] Xi, X.; He, Q.; Yang, L. On the largest cartesian closed category of stable domains, Theoret. Comput. Sci., Volume 669 (2017), pp. 22-32 | DOI | Zbl

[36] Yang, Y. C. l-groups and bézout domains, PHD thesis, Von der Fakultat Math. und Physik der Universitat Stuttgart, 2006

[37] Yang, Y. C.; Rump, W. Bézout domains with nonzero unit radical, Comm. Algebra, Volume 38 (2010), pp. 1084-1092 | DOI | Zbl

[38] Zhao, H.; Kou, H. T\(\omega\) as a stable universal domain, Electron. Notes Theor. Comput. Sci., Volume 301 (2014), pp. 189-202 | Zbl | DOI

Cité par Sources :