Voir la notice de l'article provenant de la source International Scientific Research Publications
Suwannaprapa, Montira  1 ; Petrot, Narin  2
@article{JNSA_2018_11_5_a8, author = {Suwannaprapa, Montira and Petrot, Narin }, title = {Finding a solution of split null point of the sum of monotone operators without prior knowledge of operator norms in {Hilbert} spaces}, journal = {Journal of nonlinear sciences and its applications}, pages = {683-700}, publisher = {mathdoc}, volume = {11}, number = {5}, year = {2018}, doi = {10.22436/jnsa.011.05.09}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.05.09/} }
TY - JOUR AU - Suwannaprapa, Montira AU - Petrot, Narin TI - Finding a solution of split null point of the sum of monotone operators without prior knowledge of operator norms in Hilbert spaces JO - Journal of nonlinear sciences and its applications PY - 2018 SP - 683 EP - 700 VL - 11 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.05.09/ DO - 10.22436/jnsa.011.05.09 LA - en ID - JNSA_2018_11_5_a8 ER -
%0 Journal Article %A Suwannaprapa, Montira %A Petrot, Narin %T Finding a solution of split null point of the sum of monotone operators without prior knowledge of operator norms in Hilbert spaces %J Journal of nonlinear sciences and its applications %D 2018 %P 683-700 %V 11 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.05.09/ %R 10.22436/jnsa.011.05.09 %G en %F JNSA_2018_11_5_a8
Suwannaprapa, Montira ; Petrot, Narin . Finding a solution of split null point of the sum of monotone operators without prior knowledge of operator norms in Hilbert spaces. Journal of nonlinear sciences and its applications, Tome 11 (2018) no. 5, p. 683-700. doi : 10.22436/jnsa.011.05.09. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.05.09/
[1] On the asymptotic behavior of nonexpansive mappings and semigroups in Banach spaces, Houston J. Math., Volume 4 (1978), pp. 1-9
[2] Quelques propriétés des opérateurs angle-bornés et n-cycliquement monotones, Israel J. Math., Volume 26 (1977), pp. 137-150 | DOI | Zbl
[3] Convex analysis and monotone operator theory in Hilbert spaces, CMS Books in Mathematics/Ouvrages de Mathmatiques de la SMC, Springer, New York, 2011 | DOI
[4] The viscosity approximation forward-backward splitting method for zeros of the sum of monotone operators, Abstr. Appl. Anal., Volume 2016 (2016 ), pp. 1-10
[5] Nonexpansive projections and resolvents of accretive operators in Banach spaces, Houston J. Math., Volume 3 (1977), pp. 459-470 | Zbl
[6] Iterative oblique projection onto convex sets and the split feasibility problem , Inverse Problems, Volume 18 (2002), pp. 441-453 | Zbl | DOI
[7] Weak and strong convergence of algorithms for the split common null point problem, J. Nonlinear Convex Analysis, Volume 13 (2012), pp. 759-775 | Zbl
[8] Iterative methods for fixed point problems in Hilbert Spaces, Lecture Notes in Mathematics, Springer, Heidelberg, 2012 | DOI
[9] A unified approach for inversion problems in intensity-modulated radiation therapy , Phys. Med. Biol., Volume 51 (2006), pp. 2353-2365 | DOI
[10] A multiprojection algorithm using Bregman projections in product space, Numer. Algorithms, Volume 8 (1994), pp. 221-239 | Zbl | DOI
[11] Algorithms for the split variational inequality problem , Numer. Algorithms, Volume 59 (2012), pp. 301-323 | DOI
[12] On a class of split equality fixed point problems in Hilbert spaces, J. Nonlinear Var. Anal., Volume 1 (2017), pp. 201-212
[13] Weak convergence of a splitting algorithm in Hilbert spaces, J. Appl. Anal. Comput., Volume 7 (2017), pp. 427-438
[14] Strong convergence of a splitting algorithm for treating monotone operators, Fixed Point Theory Appl., Volume 2014 (2014 ), pp. 1-15 | DOI | Zbl
[15] A modified regularization method for finding zeros of monotone operators in Hilbert spaces , J. Inequal. Appl., Volume 2015 (2015 ), pp. 1-10 | DOI | Zbl
[16] Iterative methods for the split common fixed point problem in Hilbert spaces, Fixed Point Theory Appl., Volume 2014 (2014 ), pp. 1-8 | DOI
[17] On the Douglas-Rachford splitting method and the proximal point algorithm for maximal monotone operators , Math. Programming, Volume 55 (1992), pp. 293-318 | DOI
[18] Common solutions of a system of variational inequality problems, Politehn. Univ. Bucharest Sci. Bull. Ser. A Appl. Math. Phys., Volume 77 (2015), pp. 55-62
[19] A relaxed projection method for split variational inequalities, J. Optim. Theory Appl., Volume 166 (2015), pp. 213-233 | Zbl | DOI
[20] Ishikawa and Mann iterative process with errors for nonlinear strongly accretive mappings in Banach spaces, J. Math. Anal. Appl., Volume 194 (1995), pp. 114-125 | DOI
[21] Solving the split feasibility problem without prior knowledge of matrix norms, Inverse Problems, Volume 28 (2012), pp. 1-18 | Zbl | DOI
[22] Convergence of generalized proximal point algorithm, Commun. Pure Appl. Anal., Volume 3 (2004), pp. 791-808
[23] A general iterative method for nonexpansive mappings in Hilbert spaces, J. Math. Anal. Appl., Volume 318 (2006), pp. 43-52 | DOI
[24] Régularisation d’inéquations variationnelles par approximations successives, Rev. Franaise Informat. Recherche Opérationnelle, Volume 4 (1970), pp. 154-158 | Zbl
[25] Viscosity approximation methods for fixed-points problems, J. Math. Anal. Appl., Volume 241 (2000), pp. 46-55 | DOI
[26] A note on the split common fixed-point problem for quasi-nonexpansive operators, Nonlinear Anal., Volume 74 (2011), pp. 4083-4087 | DOI
[27] Split monotone variational inclusions, J. Optim. Theory Appl., Volume 150 (2011), pp. 275-283
[28] Finding a zero of the sum of two maximal monotone operators, J. Optim. Theory Appl., Volume 94 (1997), pp. 425-448 | DOI
[29] A regularization method for treating zero points of the sum of two monotone operators, Fixed Point Theory Appl., Volume 2014 (2014 ), pp. 1-10 | Zbl | DOI
[30] Projection splitting algorithms for nonself operators, J. Nonlinear Convex Anal., Volume 18 (2017), pp. 925-935 | Zbl
[31] Strong convergence to common fixed points of families of nonexpansive mappings, J. Math. Anal. Appl., Volume 211 (1997), pp. 71-83 | DOI
[32] Weak convergence theorems for split feasibility problems on zeros of the sum of monotone operators and fixed point sets in Hilbert spaces, Fixed Point Theory Appl., Volume 2017 (2017 ), pp. 1-17 | Zbl | DOI
[33] Introduction to nonlinear and convex analysis, Yokohama Publishers, Yokohama, 2009
[34] Weak convergence theorems for nonexpansive mappings and monotone mappings, J. Optim. Theory Appl., Volume 118 (2003), pp. 417-428 | DOI
[35] Iterative methods for generalized split feasibility problems in Hilbert spaces, Set-Valued Var. Anal., Volume 23 (2015), pp. 205-221 | DOI
[36] A modified forward-backward splitting method for maximal monotone mappings, SIAM J. Control Optim., Volume 38 (2000), pp. 431-446 | Zbl | DOI
[37] Iterative algorithms for nonlinear operators, J. London Math. Soc., Volume 66 (2002), pp. 240-256 | DOI
[38] Averaged mappings and the gradient-projection algorithm, J. Optim. Theory Appl., Volume 150 (2011), pp. 360-378 | DOI
[39] On convergence criteria of generalized proximal point algorithms, J. Comput. Appl. Math., Volume 217 (2008), pp. 46-55 | DOI | Zbl
[40] Strong convergence of the viscosity approximation process for the split common fixed-point problem of quasi-nonexpansive mappings, J. Appl. Math., Volume 2012 (2012 ), pp. 1-12 | Zbl
Cité par Sources :