A reduced-order extrapolating Crank-Nicolson finite difference scheme for the Riesz space fractional order equations with a nonlinear source function and delay
Journal of nonlinear sciences and its applications, Tome 11 (2018) no. 5, p. 672-682.

Voir la notice de l'article provenant de la source International Scientific Research Publications

This article mainly studies the order-reduction of the classical Crank-Nicolson finite difference (CNFD) scheme for the Riesz space fractional order differential equations (FODEs) with a nonlinear source function and delay on a bounded domain. For this reason, the classical CNFD scheme for the Riesz space FODE and the existence, stability, and convergence of the classical CNFD solutions are first recalled. And then, a reduced-order extrapolating CNFD (ROECNFD) scheme containing very few degrees of freedom but holding the fully second-order accuracy for the Riesz space FODEs is established by means of proper orthogonal decomposition and the existence, stability, and convergence of the ROECNFD solutions are discussed. Finally, some numerical experiments are presented to illustrate that the ROECNFD scheme is far superior to the classical CNFD one and to verify the correctness of theoretical results. This indicates that the ROECNFD scheme is very effective for solving the Riesz space FODEs with a nonlinear source function and delay.
DOI : 10.22436/jnsa.011.05.08
Classification : 34K28, 65M12, 35R11, 34K37
Keywords: Crank-Nicolson finite difference scheme, Riesz space fractional order differential equation, existence and stability as well as convergence, reduced-order extrapolating Crank-Nicolson finite difference scheme, proper orthogonal decomposition

Cao, Yanhua  1 ; Luo, Zhendong  2

1 School of Sciences, East China Jiaotong University, Nanchang 330013, China
2 School of Mathematics and Physics, North China Electric Power University, Beijing 102206, China
@article{JNSA_2018_11_5_a7,
     author = {Cao, Yanhua  and Luo, Zhendong },
     title = {A reduced-order extrapolating {Crank-Nicolson} finite difference scheme for the {Riesz} space fractional order equations with a nonlinear source function and delay},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {672-682},
     publisher = {mathdoc},
     volume = {11},
     number = {5},
     year = {2018},
     doi = {10.22436/jnsa.011.05.08},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.05.08/}
}
TY  - JOUR
AU  - Cao, Yanhua 
AU  - Luo, Zhendong 
TI  - A reduced-order extrapolating Crank-Nicolson finite difference scheme for the Riesz space fractional order equations with a nonlinear source function and delay
JO  - Journal of nonlinear sciences and its applications
PY  - 2018
SP  - 672
EP  - 682
VL  - 11
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.05.08/
DO  - 10.22436/jnsa.011.05.08
LA  - en
ID  - JNSA_2018_11_5_a7
ER  - 
%0 Journal Article
%A Cao, Yanhua 
%A Luo, Zhendong 
%T A reduced-order extrapolating Crank-Nicolson finite difference scheme for the Riesz space fractional order equations with a nonlinear source function and delay
%J Journal of nonlinear sciences and its applications
%D 2018
%P 672-682
%V 11
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.05.08/
%R 10.22436/jnsa.011.05.08
%G en
%F JNSA_2018_11_5_a7
Cao, Yanhua ; Luo, Zhendong . A reduced-order extrapolating Crank-Nicolson finite difference scheme for the Riesz space fractional order equations with a nonlinear source function and delay. Journal of nonlinear sciences and its applications, Tome 11 (2018) no. 5, p. 672-682. doi : 10.22436/jnsa.011.05.08. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.05.08/

[1] Benner, P.; Cohen, A.; Ohlberger, M.; Willcox, K. Model Reduction and Approximation: Theory and Algorithm, Computational Science & Engineering, SIAM, 2017

[2] Cazemier, W.; Verstappen, R. W. C. P.; Veldman, A. E. P. Proper orthogonal decomposition and low-dimensinal models for driven cavity flows, Physics of Fluids, Volume 10 (1998), pp. 1685-1699 | DOI

[3] Chou, H.; Lee, B.; C. Chen The transient infiltration process for seepage flow from cracks, Advances in Subsurface Flow and Transport: Eastern and Western Approaches III, , 2006

[4] Chung, T. J. Computational Fluid Dynamics, Cambridge University Press, Cambridge, 2002 | DOI

[5] Fukunaga, K. Introduction to Statistical Recognition, Academic Press, Boston, 1990

[6] Hesthaven, J. S.; Rozza, G.; Stamm, B. Certified Reduced Basis Methods for Parametrized Partial Differential Equations, BCAM SpringerBriefs, Springer, Cham; BCAM Basque Center for Applied Mathematics, Bilbao, 2016 | DOI

[7] Holmes, P.; Lumley, J. L.; Berkooz, G. Turbulence, Coherent Structures, Dynamical Systems and Symmetry , Cambridge University Press, Cambridge, 1996 | Zbl | DOI

[8] A. X. Huang A new decomposition for solving percolation equations in porous media, Third International Symposium, on Aerothermodynamics of Internal Flows, Beijing, China, Volume 1 (1996), pp. 417-420

[9] Jolliffe, I. T. Principal Component Analysis, (Second edition) Springer Series in Statistics, Springer-Verlag, New York, 2002 | DOI

[10] Kunisch, K.; S. Volkwein Galerkin proper orthogonal decomposition methods for parabolic problems, Numer. Math., Volume 90 (2001), pp. 117-148 | DOI

[11] Kunisch, K.; Volkwein, S. Galerkin proper orthogonal decomposition methods for a general equation in fluid dynamischs, SIAM J. Numer. Anal., Volume 40 (2002), pp. 492-515 | DOI

[12] Kumar, D.; Singh, J.; D. Baleanu Numerical Computation of a Fractional Model of Differential-Difference Equation, J. Comput. Nonlinear Dynam., Volume 11 (2016), pp. 1-6 | DOI

[13] Kumar, D.; Singh, J.; Baleanu, D. A fractional model of convective radial fins with temperature-dependent thermal conductivity, Rom. Rep. Phys., Volume 69 (2017), pp. 1-13

[14] Kumar, D.; Singh, J.; Baleanu, D. A hybrid computational approach for Klein-Gordon equations on Cantor sets, Nonlinear Dynam., Volume 87 (2017), pp. 511-517 | Zbl | DOI

[15] Kumar, D.; Singh, J.; Baleanu, D. Modified Kawahara equation within a fractional derivative with non-singular kernel, Therm. Sci., Volume 2017 (2017 ), pp. 1-10

[16] Kumar, D.; Singh, J.; Kumar, S.; Singh, B. P. Numerical computation of nonlinear shock wave equation of fractional order, Ain Shams Eng. J., Volume 6 (2015), pp. 605-611 | DOI

[17] Liu, F.; Zhuang, P.; Liu, Q. X. Numerical methods of fractional partial differential equations and their applications, Science Press, In Chinease, 2015

[18] Luo, Z.; Chen, J.; Navon, I. M.; Yang, X. Mixed finite element formulation and error estimates based on proper orthogonal decomposition for the non-stationary Navier-Stokes equations, SIAM J. Numer. Anal., Volume 47 (2008/09), pp. 1-19 | DOI

[19] Luo, Z.; Gao, J. Q. A POD-based reduced-order finite difference time-domain extrapolating scheme for the 2D Maxwell equations in a lossy medium, J. Math. Anal. Appl., Volume 444 (2016), pp. 433-451 | DOI

[20] Luo, Z.; Li, H.; Sun, P.; Gao, J. A reduced-order finite difference extrapolation algorithm based on POD technique for the non-stationary Navier-Stokes equations, Appl. Math. Model., Volume 37 (2013), pp. 5464-5473 | DOI

[21] Luo, Z.; Li, H.; Zhou, Y.; Huang, X. A reduced FVE formulation based on POD method and error analysis for twodimensional viscoelastic problem, J. Math. Anal. Appl., Volume 358 (2012), pp. 310-321 | DOI

[22] Luo, Z.; Li, H.; Zhou, Y.; Xie, Z. A reduced finite element formulation based on POD method for two-dimensional solute transport problems, J. Math. Anal. Appl., Volume 385 (2012), pp. 371-383 | Zbl | DOI

[23] Luo, Z.; Xie, Z.; Shang, Y.; J. Chen A reduced finite volume element formulation and numerical simulations based on POD for parabolic problems, J. Comput. Appl. Math., Volume 235 (2011), pp. 2098-2111 | Zbl | DOI

[24] Luo, Z.; Yang, X.; Y. Zhou A reduced finite difference scheme based on singular value decomposition and proper orthogonal decomposition for Burgers equation, J. Comput. Appl. Math., Volume 229 (2009), pp. 97-107 | Zbl | DOI

[25] Ly, H. V.; Tran, H. T. Proper orthogonal decomposition for flow calculations and optimal control in a horizontal CVD reactor, Quart. Appl. Math., Volume 60 (1989), pp. 631-656 | Zbl | DOI

[26] Meerschaert, M. M.; Tadjeran, C. Finite difference approximations for two-sided space-fractional partial differential equations, Appl. Numer. Math., Volume 56 (2006), pp. 80-90 | Zbl | DOI

[27] Petford, N.; M. A. Koenders Seepage flow and consolidation in a deforming porous medium , EGS-AGU-EUG Joint Assembly, , 2003

[28] Quarteroni, A.; Manzoni, A.; Negri, F. Reduced Basis Methods for Partial Differential Equations, Springer, Cham, 2016 | DOI

[29] F. M. Selten Baroclinic empirical orthogonal functions as basis functions in an atmospheric model, J. Atmos. Sci., Volume 54 (1997), pp. 2099-2114 | DOI

[30] Sirovich, L. Turbulence and the dynamics of coherent structures: part I-III , Quart. Appl. Math., Volume 45 (1987), pp. 561-590 | DOI

[31] Sun, P.; Luo, Z.; Y. Zhou Some reduced finite difference schemes based on a proper orthogonal decomposition technique for parabolic equations , Appl. Numer. Math., Volume 60 (2010), pp. 154-164 | Zbl | DOI

[32] Thusyanthan, N. I.; S. P. G. Madabhushi Scaling of seepage flow velocity in centrifuge models, Cambridge University Engineering Department Technical Report CUED/D-SOILS/TR326, Volume 2003 (2003), pp. 1-13

[33] Xia, H.; Luo, Z. An optimized finite difference iterative scheme based on POD technique for the 2D viscoelastic wave equation, Appl. Math. Mech., Volume 38 (2017), pp. 1721-1732 | DOI | Zbl

[34] Xia, H.; Luo, Z. A POD-based optimized finite difference CN extrapolated implicit scheme for the 2D viscoelastic wave equation, Math. Methods Appl. Sci., Volume 40 (2017), pp. 6880-6890 | Zbl | DOI

[35] S. P. Yang Finite difference method for Riesz space fractional diffusion equations with delay and a nonlinear source term, J. Nonlinear Sci. Appl., Volume 11 (2018), pp. 17-25

[36] Zhang, W. S. Finite Difference Methods for Patial Differential Equations in Science Computation, Higher Education Press, Beijing, 2006

Cité par Sources :