New integral inequalities and their applications to convex functions with a continuous Caputo fractional derivative
Journal of nonlinear sciences and its applications, Tome 11 (2018) no. 5, p. 658-671.

Voir la notice de l'article provenant de la source International Scientific Research Publications

We say that a function $f:[a,b]\to \mathbb{R}$ is $(\varphi,\delta)$-Lipschitzian, where $\delta\geq 0$ and $\varphi:[0,\infty)\to [0,\infty)$, if
$ |f(x)-f(y)|\leq \varphi(|x-y|)+\delta,\quad (x,y)\in [a,b]\times [a,b]. $
In this work, some Hadamard's type inequalities are established for the class of $(\varphi,\delta)$-Lipschitzian mappings. Moreover, some applications to convex functions with a continuous Caputo fractional derivative are also discussed.
DOI : 10.22436/jnsa.011.05.07
Classification : 26D10, 35A23, 26A33, 26A51
Keywords: \((\varphi, \delta)\)-Lipschitzian, Hadamard's type inequalities, convex function, Caputo fractional derivative, fractional mean value theorem

Ahmad, Bashir  1 ; Jleli, Mohamed  2 ; Samet, Bessem  2

1 Nonlinear Analysis and Applied Mathematics (NAAM)-Research Group, Department of Mathematics, Faculty of Science, King Abdulaziz University, P. O. Box 80203, Jeddah 21589, Saudi Arabia
2 Department of Mathematics, College of Science, King Saud University, P. O. Box 2455, Riyadh, 11451, Saudi Arabia
@article{JNSA_2018_11_5_a6,
     author = {Ahmad, Bashir  and Jleli, Mohamed   and Samet, Bessem },
     title = {New integral inequalities  and their applications to convex functions with a continuous {Caputo} fractional derivative},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {658-671},
     publisher = {mathdoc},
     volume = {11},
     number = {5},
     year = {2018},
     doi = {10.22436/jnsa.011.05.07},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.05.07/}
}
TY  - JOUR
AU  - Ahmad, Bashir 
AU  - Jleli, Mohamed  
AU  - Samet, Bessem 
TI  - New integral inequalities  and their applications to convex functions with a continuous Caputo fractional derivative
JO  - Journal of nonlinear sciences and its applications
PY  - 2018
SP  - 658
EP  - 671
VL  - 11
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.05.07/
DO  - 10.22436/jnsa.011.05.07
LA  - en
ID  - JNSA_2018_11_5_a6
ER  - 
%0 Journal Article
%A Ahmad, Bashir 
%A Jleli, Mohamed  
%A Samet, Bessem 
%T New integral inequalities  and their applications to convex functions with a continuous Caputo fractional derivative
%J Journal of nonlinear sciences and its applications
%D 2018
%P 658-671
%V 11
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.05.07/
%R 10.22436/jnsa.011.05.07
%G en
%F JNSA_2018_11_5_a6
Ahmad, Bashir ; Jleli, Mohamed  ; Samet, Bessem . New integral inequalities  and their applications to convex functions with a continuous Caputo fractional derivative. Journal of nonlinear sciences and its applications, Tome 11 (2018) no. 5, p. 658-671. doi : 10.22436/jnsa.011.05.07. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.05.07/

[1] Baleanu, D.; P. Agarwal Certain inequalities involving the fractional q-integral operators, Abstr. Appl. Anal., Volume 2014 (2014 ), pp. 1-10

[2] Baleanu, D.; Mustafa, O. G.; R. P. Agarwal An existence result for a superlinear fractional differential equation, Appl. Math. Lett., Volume 23 (2010), pp. 1129-1132 | Zbl | DOI

[3] Baleanu, D.; Mustafa, O. G.; Agarwal, R. P. Asymptotically linear solutions for some linear fractional differential equations, Abstr. Appl. Anal., Volume 2010 (2010), pp. 1-8

[4] Chen, H.; U. N. Katugampola Hermite-Hadamard and Hermite-Hadamard-Fejér type inequalities for generalized fractional integrals, J. Math. Anal. Appl., Volume 446 (2017), pp. 1274-1291 | DOI | Zbl

[5] Dragomir, S. S. Two mappings in connection to Hadamard’s inequalities, J. Math. Anal. Appl., Volume 167 (1992), pp. 49-56 | Zbl | DOI

[6] Dragomir, S. S. On some new inequalities of Hermite-Hadamard type for m-convex functions, Tamkang J. Math., Volume 33 (2002), pp. 45-65

[7] Dragomir, S. S. Hermite-Hadamard’s type inequalities for operator convex functions, Appl. Math. Comput., Volume 218 (2011), pp. 766-772 | Zbl | DOI

[8] Dragomir, S. S.; Cho, Y. J.; Kim, S. S. Inequalities of Hadamard’s type for Lipschitzian mappings and their applications, J. Math. Anal. Appl., Volume 245 (2000), pp. 489-501 | Zbl | DOI

[9] Dragomir, S. S.; Fitzpatrick, S. The Hadamard inequalities for s-convex functions in the second sense, Demonstratio Math., Volume 32 (1999), pp. 687-696

[10] Dragomir, S. S.; Pearce, C. E. M. Selected topics on Hermite-Hadamard inequalities and applications, RGMIA Monographs, Victoria University, 2000

[11] Dragomir, S. S.; Pečarić, J.; Persson, L. E. Some inequalities of Hadamard type, Soochow J. Math., Volume 21 (1995), pp. 335-341

[12] Dragomir, S. S.; Toader, G. Some inequalities for m-convex functions, Studia Univ. Babeş-Bolyai Math., Volume 38 (1993), pp. 21-28

[13] Gordji, M. E.; Delavar, M. R.; Dragomir, S. S. Some inequality related to \(\eta\)-convex function, Preprint Rgmia Res. Rep. Coll., Volume 18 (2015), pp. 1-9

[14] Gordji, M. E.; Delavar, M. R.; Sen, M. DE LA On \(\varphi\)-convex functions, J. Math. Inequal., Volume 10 (2016), pp. 173-183

[15] Hadamard, J. Etude sur les propriétés des fonctions entiéres et en particulier dune fonction considérée par Riemann, J. Math. Pures Appl., Volume 9 (1893), pp. 171-216 | EuDML | Zbl

[16] I. İşcan On generalization of different type integral inequalities for s-convex functions via fractional integrals, Math. Sci. Appl. E-Notes., Volume 2 (2014), pp. 55-67 | Zbl

[17] Odibat, Z. M.; Shawagfeh, N. T. Generalized Taylor’s formula, Appl. Math. Comput. , Volume 186 (2007), pp. 286-293 | DOI

[18] Pearce, C. E. M.; Rubinov, A. M. P-functions, Quasi-convex Functions, and Hadamard-type Inequalities, J. Math. Anal. Appl., Volume 240 (1999), pp. 92-104 | Zbl | DOI

[19] Samko, S. G.; Kilbas, A. A.; O. I. Marichev Fractional Integrals and Derivatives: Theory and Applications, Gordon and Breach Science Publishers, Switzerland, USA, 1993

[20] Sarikaya, M. Z.; Saglam, A.; H. Yildirim On some Hadamard-type inequalities for h-convex functions, J. Math. Inequal., Volume 2 (2008), pp. 335-341 | DOI

[21] Sarikaya, M. Z.; Set, E.; Yaldiz, H.; N. Başak Hermite-Hadamard’s inequalities for fractional integrals and related fractional inequalities, Math. Comput. Modelling, Volume 57 (2013), pp. 2403-2407 | DOI

[22] Toader, G. Some generalizations of the convexity, Proceedings of the colloquium on approximation and optimization, Univ. Cluj-Napoca, Cluj-Napoca, 1985

[23] Tseng, K.-L.; Yang, G.-S.; Dragomir, S. S. On quasi convex functions and Hadamard’s inequality, RGMIA research report collection, , 2003

[24] Wang, G.; Agarwal, P.; Baleanu, D. Certain new Gruss type inequalities involving Saigo fractional q-integral operator, J. Comput. Anal. Appl., Volume 19 (2015), pp. 862-873

Cité par Sources :