Voir la notice de l'article provenant de la source International Scientific Research Publications
$ |f(x)-f(y)|\leq \varphi(|x-y|)+\delta,\quad (x,y)\in [a,b]\times [a,b]. $ |
Ahmad, Bashir  1 ; Jleli, Mohamed  2 ; Samet, Bessem  2
@article{JNSA_2018_11_5_a6, author = {Ahmad, Bashir and Jleli, Mohamed and Samet, Bessem }, title = {New integral inequalities and their applications to convex functions with a continuous {Caputo} fractional derivative}, journal = {Journal of nonlinear sciences and its applications}, pages = {658-671}, publisher = {mathdoc}, volume = {11}, number = {5}, year = {2018}, doi = {10.22436/jnsa.011.05.07}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.05.07/} }
TY - JOUR AU - Ahmad, Bashir AU - Jleli, Mohamed AU - Samet, Bessem TI - New integral inequalities and their applications to convex functions with a continuous Caputo fractional derivative JO - Journal of nonlinear sciences and its applications PY - 2018 SP - 658 EP - 671 VL - 11 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.05.07/ DO - 10.22436/jnsa.011.05.07 LA - en ID - JNSA_2018_11_5_a6 ER -
%0 Journal Article %A Ahmad, Bashir %A Jleli, Mohamed %A Samet, Bessem %T New integral inequalities and their applications to convex functions with a continuous Caputo fractional derivative %J Journal of nonlinear sciences and its applications %D 2018 %P 658-671 %V 11 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.05.07/ %R 10.22436/jnsa.011.05.07 %G en %F JNSA_2018_11_5_a6
Ahmad, Bashir ; Jleli, Mohamed ; Samet, Bessem . New integral inequalities and their applications to convex functions with a continuous Caputo fractional derivative. Journal of nonlinear sciences and its applications, Tome 11 (2018) no. 5, p. 658-671. doi : 10.22436/jnsa.011.05.07. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.05.07/
[1] Certain inequalities involving the fractional q-integral operators, Abstr. Appl. Anal., Volume 2014 (2014 ), pp. 1-10
[2] An existence result for a superlinear fractional differential equation, Appl. Math. Lett., Volume 23 (2010), pp. 1129-1132 | Zbl | DOI
[3] Asymptotically linear solutions for some linear fractional differential equations, Abstr. Appl. Anal., Volume 2010 (2010), pp. 1-8
[4] Hermite-Hadamard and Hermite-Hadamard-Fejér type inequalities for generalized fractional integrals, J. Math. Anal. Appl., Volume 446 (2017), pp. 1274-1291 | DOI | Zbl
[5] Two mappings in connection to Hadamard’s inequalities, J. Math. Anal. Appl., Volume 167 (1992), pp. 49-56 | Zbl | DOI
[6] On some new inequalities of Hermite-Hadamard type for m-convex functions, Tamkang J. Math., Volume 33 (2002), pp. 45-65
[7] Hermite-Hadamard’s type inequalities for operator convex functions, Appl. Math. Comput., Volume 218 (2011), pp. 766-772 | Zbl | DOI
[8] Inequalities of Hadamard’s type for Lipschitzian mappings and their applications, J. Math. Anal. Appl., Volume 245 (2000), pp. 489-501 | Zbl | DOI
[9] The Hadamard inequalities for s-convex functions in the second sense, Demonstratio Math., Volume 32 (1999), pp. 687-696
[10] Selected topics on Hermite-Hadamard inequalities and applications, RGMIA Monographs, Victoria University, 2000
[11] Some inequalities of Hadamard type, Soochow J. Math., Volume 21 (1995), pp. 335-341
[12] Some inequalities for m-convex functions, Studia Univ. Babeş-Bolyai Math., Volume 38 (1993), pp. 21-28
[13] Some inequality related to \(\eta\)-convex function, Preprint Rgmia Res. Rep. Coll., Volume 18 (2015), pp. 1-9
[14] On \(\varphi\)-convex functions, J. Math. Inequal., Volume 10 (2016), pp. 173-183
[15] Etude sur les propriétés des fonctions entiéres et en particulier dune fonction considérée par Riemann, J. Math. Pures Appl., Volume 9 (1893), pp. 171-216 | EuDML | Zbl
[16] On generalization of different type integral inequalities for s-convex functions via fractional integrals, Math. Sci. Appl. E-Notes., Volume 2 (2014), pp. 55-67 | Zbl
[17] Generalized Taylor’s formula, Appl. Math. Comput. , Volume 186 (2007), pp. 286-293 | DOI
[18] P-functions, Quasi-convex Functions, and Hadamard-type Inequalities, J. Math. Anal. Appl., Volume 240 (1999), pp. 92-104 | Zbl | DOI
[19] Fractional Integrals and Derivatives: Theory and Applications, Gordon and Breach Science Publishers, Switzerland, USA, 1993
[20] On some Hadamard-type inequalities for h-convex functions, J. Math. Inequal., Volume 2 (2008), pp. 335-341 | DOI
[21] Hermite-Hadamard’s inequalities for fractional integrals and related fractional inequalities, Math. Comput. Modelling, Volume 57 (2013), pp. 2403-2407 | DOI
[22] Some generalizations of the convexity, Proceedings of the colloquium on approximation and optimization, Univ. Cluj-Napoca, Cluj-Napoca, 1985
[23] On quasi convex functions and Hadamard’s inequality, RGMIA research report collection, , 2003
[24] Certain new Gruss type inequalities involving Saigo fractional q-integral operator, J. Comput. Anal. Appl., Volume 19 (2015), pp. 862-873
Cité par Sources :