Approximation of solutions to a general system of variational inclusions in Banach spaces and applications
Journal of nonlinear sciences and its applications, Tome 11 (2018) no. 5, p. 644-657.

Voir la notice de l'article provenant de la source International Scientific Research Publications

In this paper, a general system of variational inclusions in Banach Spaces is introduced. An iterative method for finding solutions of a general system of variational inclusions with inverse-strongly accretive mappings and common set of fixed points for a $\lambda$-strict pseudocontraction is established. Under certain conditions, by forward-backward splitting method, we prove strong convergence theorems in uniformly convex and 2-uniformly smooth Banach spaces. The results presented in the paper improve and extend various results in the existing literatures. Moreover, some applications to monotone variational inequality problem and convex minimization problem are presented.
DOI : 10.22436/jnsa.011.05.06
Classification : 47J05, 47H09, 49J25
Keywords: General system of variational inclusions, forward-backward splitting method, invex set, resolvent operator, strictly pseudocontractive

Liu, Hongbo  1 ; Long, Qiang  1 ; Li, Yi  2

1 School of Science, Southwest University of Science and Technology, Mianyang, Sichuan 621010, China
2 School of Science, Southwest University of Science and Technology, China
@article{JNSA_2018_11_5_a5,
     author = {Liu, Hongbo  and Long, Qiang  and Li, Yi },
     title = {Approximation of solutions to a general system of  variational inclusions in {Banach} spaces and applications},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {644-657},
     publisher = {mathdoc},
     volume = {11},
     number = {5},
     year = {2018},
     doi = {10.22436/jnsa.011.05.06},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.05.06/}
}
TY  - JOUR
AU  - Liu, Hongbo 
AU  - Long, Qiang 
AU  - Li, Yi 
TI  - Approximation of solutions to a general system of  variational inclusions in Banach spaces and applications
JO  - Journal of nonlinear sciences and its applications
PY  - 2018
SP  - 644
EP  - 657
VL  - 11
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.05.06/
DO  - 10.22436/jnsa.011.05.06
LA  - en
ID  - JNSA_2018_11_5_a5
ER  - 
%0 Journal Article
%A Liu, Hongbo 
%A Long, Qiang 
%A Li, Yi 
%T Approximation of solutions to a general system of  variational inclusions in Banach spaces and applications
%J Journal of nonlinear sciences and its applications
%D 2018
%P 644-657
%V 11
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.05.06/
%R 10.22436/jnsa.011.05.06
%G en
%F JNSA_2018_11_5_a5
Liu, Hongbo ; Long, Qiang ; Li, Yi . Approximation of solutions to a general system of  variational inclusions in Banach spaces and applications. Journal of nonlinear sciences and its applications, Tome 11 (2018) no. 5, p. 644-657. doi : 10.22436/jnsa.011.05.06. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.05.06/

[1] Aoyama, K.; Iiduka, H.; W. Takahashi Weak convergence of an iterative sequence for accretive operators in Banach spaces, Fixed Point Theory Appl., Volume 2006 (2006 ), pp. 1-13 | DOI

[2] Aoyama, K.; Kimura, Y.; Takahashi, W.; Toyoda, M. On a strongly nonexpansive sequence in Hilbert spaces, J. Nonlinear Convex Anal., Volume 8 (2007), pp. 471-489

[3] Ceng, L.-C.; Wang, C.-Y.; Yao, J.-C. Strong convergence theorems by a relaxed extragradient method for a general system of variational inequalities, Math. Methods Oper. Res., Volume 67 (2008), pp. 375-390 | DOI

[4] Chang, S.-S.; Wen, C.-F.; Yao, J.-C. Generalized viscosity implicit rules for solving quasi-inclusion problems of accretive operators in Banach spaces, Optimization, Volume 66 (2017), pp. 1105-1117 | Zbl | DOI

[5] Chen, G. H.-G.; Rockafellar, R. T. Convergence rates in forward-backward splitting , SIAM J. Optim., Volume 7 (1997), pp. 421-444 | DOI

[6] Cholamjiak, P. A generalized forward-backward splitting method for solving quasi inclusion problems in Banach spaces, Numer. Algorithms, Volume 71 (2016), pp. 915-932 | DOI | Zbl

[7] Combettes, P. L. Iterative construction of the resolvent of a sum of maximal monotone operators, J. Convex Anal., Volume 16 (2009), pp. 727-748 | Zbl

[8] Combettes, P. L.; V. R.Wajs Signal recovery by proximal forward-backward splitting , Multiscale Model. Simul., Volume 4 (2005), pp. 1168-1200 | DOI | Zbl

[9] Kitahara, S.; W. Takahashi Image recovery by convex combinations of sunny nonexpansive retractions, Topol. Methods Nonlinear Anal., Volume 2 (1993), pp. 333-342 | Zbl | DOI

[10] Lions, P.-L.; B. Mercier Splitting algorithms for the sum of two nonlinear operators, SIAM J. Numer. Anal., Volume 16 (1979), pp. 964-979 | DOI

[11] Qin, X.; Chang, S. S.; Cho, Y. J.; S. M. King Approximation of solutions to a system of variational inclusions in Banach spaces, J. Inequal. Appl., Volume 2010 (2010 ), pp. 1-16 | Zbl | DOI

[12] Reich, S.; Shafrir, I. Asymptotic behavior of contractions in Banach spaces, J. Math. Anal. Appl., Volume 44 (1973), pp. 57-70 | DOI

[13] Rockafellar, R. T. On the maximality of sums of nonlinear monotone operators, Trans. Amer. Math. Soc., Volume 149 (1970), pp. 75-88 | DOI

[14] T. Suzuki Strong convergence of Krasnoselskii and Mann’s type sequences for one-parameter nonexpansive semigroups without Bochner integrals, J. Math. Anal. Appl., Volume 305 (2005), pp. 227-239 | DOI | Zbl

[15] Takahashi, W.; Wong, N.-C.; J.-C. Yao Two generalized strong convergence theorems of Halpern’s type in Hilbert spaces and applications, Taiwanese J. Math., Volume 16 (2012), pp. 1151-1172 | DOI | Zbl

[16] P. Tseng A modified forward-backward splitting method for maximal monotone mappings, SIAM J. Control Optim., Volume 38 (2000), pp. 431-446 | Zbl | DOI

[17] Xu, H. K. Inequalities in Banach spaces with applications, Nonlinear Anal., Volume 16 (1991), pp. 1127-1138 | DOI

[18] Xu, H. K. An iterative approach to quadratic optimization, J. Optim. Theory Appl., Volume 116 (2003), pp. 659-678 | DOI

[19] Yao, Y.; Yao, J.-C. On modified iterative method for nonexpansive mappings and monotone mappings, Appl. Math. Comput., Volume 186 (2007), pp. 1551-1558 | DOI

[20] Zhang, S.-S.; Lee, J. H. W.; Chan, C. K. Algorithms of common solutions to quasi variational inclusion and fixed point problems, Appl. Math. Mech. (English Ed.), Volume 29 (2008), pp. 571-581 | Zbl | DOI

[21] H. Zhou Convergence theorems for \(\lambda\)-strict pseudo-contractions in 2-uniformly smooth Banach spaces, Nonlinear Anal., Volume 69 (2008), pp. 3160-3173 | DOI | Zbl

Cité par Sources :