Solving parabolic integro-differential equations with purely nonlocal conditions by using the operational matrices of Bernstein polynomials
Journal of nonlinear sciences and its applications, Tome 11 (2018) no. 5, p. 624-634.

Voir la notice de l'article provenant de la source International Scientific Research Publications

Some problems from modern physics and science can be described in terms of partial differential equations with nonlocal conditions. In this paper, a numerical method which employs the orthonormal Bernstein polynomials basis is implemented to give the approximate solution of integro-differential parabolic equation with purely nonlocal integral conditions. The properties of orthonormal Bernstein polynomials, and the operational matrices for integration, differentiation and the product are introduced and are utilized to reduce the solution of the given integro-differential parabolic equation to the solution of algebraic equations. An illustrative example is given to demonstrate the validity and applicability of the new technique.
DOI : 10.22436/jnsa.011.05.04
Classification : 33C45, 35K20, 42C05
Keywords: Integro-differential parabolic equation, purely nonlocal integral conditions, orthonormal Bernstein polynomials, operational matrix

Bencheikh, Abdelkrim  1 ; Chiter, Lakhdar  2 ; Li, Tongxing  3

1 Department of Mathematics, University of Ouargla, 30000 Ouargla, Algeria
2 Department of Mathematics, University of Setif 1, 19000 Setif, Algeria
3 LinDa Institute of Shandong Provincial Key Laboratory of Network Based Intelligent Computing, Linyi University, Linyi, Shandong 276005, P. R. China;School of Information Science and Engineering, Linyi University, Linyi, Shandong 276005, P. R. China
@article{JNSA_2018_11_5_a3,
     author = {Bencheikh, Abdelkrim  and Chiter, Lakhdar  and Li, Tongxing },
     title = {Solving parabolic integro-differential equations with purely nonlocal conditions by using the operational matrices of {Bernstein} polynomials},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {624-634},
     publisher = {mathdoc},
     volume = {11},
     number = {5},
     year = {2018},
     doi = {10.22436/jnsa.011.05.04},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.05.04/}
}
TY  - JOUR
AU  - Bencheikh, Abdelkrim 
AU  - Chiter, Lakhdar 
AU  - Li, Tongxing 
TI  - Solving parabolic integro-differential equations with purely nonlocal conditions by using the operational matrices of Bernstein polynomials
JO  - Journal of nonlinear sciences and its applications
PY  - 2018
SP  - 624
EP  - 634
VL  - 11
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.05.04/
DO  - 10.22436/jnsa.011.05.04
LA  - en
ID  - JNSA_2018_11_5_a3
ER  - 
%0 Journal Article
%A Bencheikh, Abdelkrim 
%A Chiter, Lakhdar 
%A Li, Tongxing 
%T Solving parabolic integro-differential equations with purely nonlocal conditions by using the operational matrices of Bernstein polynomials
%J Journal of nonlinear sciences and its applications
%D 2018
%P 624-634
%V 11
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.05.04/
%R 10.22436/jnsa.011.05.04
%G en
%F JNSA_2018_11_5_a3
Bencheikh, Abdelkrim ; Chiter, Lakhdar ; Li, Tongxing . Solving parabolic integro-differential equations with purely nonlocal conditions by using the operational matrices of Bernstein polynomials. Journal of nonlinear sciences and its applications, Tome 11 (2018) no. 5, p. 624-634. doi : 10.22436/jnsa.011.05.04. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.05.04/

[1] Ang, W. T. A Method of Solution for the One-Dimensional Heat Equation Subject to Nonlocal Conditions, Southeast Asian Bull. Math., Volume 26 (2003), pp. 185-191 | DOI

[2] Ashyralyev, A.; F. S. Ozesenli Tetikoglu FDM for elliptic equations with Bitsadze-Samarskii-Dirichlet conditions , Abstr. Appl. Anal., Volume 2012 (2012 ), pp. 1-22 | Zbl

[3] Ashyralyev, A.; O. Yildirim A note on the second order of accuracy stable difference schemes for the nonlocal boundary value hyperbolic problem, Abstr. Appl. Anal., Volume 2012 (2012 ), pp. 1-29 | Zbl

[4] Avalishvili, G.; Avalishvili, M.; Gordeziani, D. On integral nonlocal boundary value problems for some partial differential equations, Bull. Georgian Natl. Acad. Sci., Volume 5 (2011), pp. 31-37

[5] Avalishvili, G.; Avalishvili, M.; Gordeziani, D. On a nonlocal problem with integral boundary conditions for a multidimensional elliptic equation, Appl. Math. Lett., Volume 24 (2011), pp. 566-571 | Zbl | DOI

[6] S. A. Beilin Existence of solutions for one-dimensional wave equations with nonlocal conditions, Electron. J. Differential Equations, Volume 2001 (2001), pp. 1-8

[7] Bellucci, M. A. On the explicit representation of orthonormal Bernstein polynomials, ArXiv Preprint, Volume 2014 (2014 ), pp. 1-13

[8] Berikelashvili, G.; N. Khomeriki On the convergence of difference schemes for one non-local boundary-value problem , Lith. Math. J., Volume 52 (2012), pp. 353-362

[9] Berikelashvili, G.; N. Khomeriki On a numerical solution of one nonlocal boundary value problem with mixed Dirichlet- Neumann conditions, Lith. Math. J., Volume 53 (2013), pp. 367-380 | Zbl | DOI

[10] Borhanifar, A.; Shahmorad, S.; E. Feizi A matrix formulated algorithm for solving parabolic equations with nonlocal boundary conditions, Numer. Algorithms, Volume 74 (2017), pp. 1203-1221 | Zbl | DOI

[11] A. Bouziani Solution forte d’un problème mixte avec une condition non locale pour une classe d’équations hyperboliques [Strong solution of a mixed problem with a nonlocal condition for a class of hyperbolic equations], Acad. Roy. Belg. Bull. Cl. Sci., Volume 8 (1997), pp. 53-70 | Zbl

[12] A. Bouziani On the quasi static flexure of thermoelastic rod , Commun. Appl. Anal., Volume 6 (2002), pp. 549-568

[13] Bouziani, A.; Mechri, R. The Rothe’s method to a parabolic integrodifferential equation with a nonclassical boundary conditions, Int. J. Stoch. Anal., Volume 2010 (2010), pp. 1-16 | Zbl

[14] Y. Liu Numerical solution of the heat equation with nonlocal boundary conditions, J. Comput. Appl. Math., Volume 110 (1999), pp. 115-127 | DOI

[15] Merad, A.; Bouziani, A.; C. Ozel Inversion Laplace transform for integrodifferential parabolic equation with purely nonlocal conditions, Hacet. J. Math. Stat., Volume 44 (2015), pp. 1087-1097 | Zbl | DOI

[16] Merad, A.; J. Martín-Vaquero A Galerkin method for two-dimensional hyperbolic integro-differential equation with purely integralconditions , Appl. Math. Comput., Volume 291 (2016), pp. 386-394 | DOI

[17] Merazga, N.; A. Bouziani Rothe time-discretization method for a nonlocal problem arising in thermoelasticity, J. Appl. Math. Stoch. Anal., Volume 2005 (2005), pp. 1-16 | Zbl | DOI

[18] Mesloub, S.; A. Bouziani Mixed problem with integral conditions for a certain class of hyperbolic equations, J. Appl. Math., Volume 1 (2001), pp. 107-116 | DOI

[19] Qin, H.; Zhang, C.; Li, T.; Chen, Y. Controllability of abstract fractional differential evolution equations with nonlocal conditions, J. Math. Computer Sci., Volume 17 (2017), pp. 293-300

[20] Shen, J.; Tang, T.; L.-L. Wang Spectral Methods: Algorithms, Analysis and Applications, Springer, New York, 2011 | DOI | Zbl

[21] Stehfest, H. Numerical inversion of Laplace transforms , Comm. ACM, Volume 13 (1970), pp. 47-49 | DOI

[22] Tohidi, E.; Kılıçman, A. An efficient spectral approximation for solving several types of parabolic PDEs with nonlocal boundary conditions, Math. Probl. Eng., Volume 2014 (2014 ), pp. 1-6

Cité par Sources :