Voir la notice de l'article provenant de la source International Scientific Research Publications
$ \left\{ \renewcommand{\arraystretch}{1.25} \begin{array}{ll} -\Delta u + V(x)u+K(x)\phi u= f(x,u), x\in \mathbb{R}^3,\\ -\Delta \phi=K(x)u^{2}, x\in \mathbb{R}^3, \end{array} \right. $ |
Wang, Da-Bin  1 ; Ma, Lu-Ping  1 ; Guan, Wen  1 ; Wu, Hong-Mei  1
@article{JNSA_2018_11_5_a0, author = {Wang, Da-Bin and Ma, Lu-Ping and Guan, Wen and Wu, Hong-Mei }, title = {Existence of solutions for {Schr\"odinger-Poisson} system with asymptotically periodic terms}, journal = {Journal of nonlinear sciences and its applications}, pages = {591-601}, publisher = {mathdoc}, volume = {11}, number = {5}, year = {2018}, doi = {10.22436/jnsa.011.05.01}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.05.01/} }
TY - JOUR AU - Wang, Da-Bin AU - Ma, Lu-Ping AU - Guan, Wen AU - Wu, Hong-Mei TI - Existence of solutions for Schrödinger-Poisson system with asymptotically periodic terms JO - Journal of nonlinear sciences and its applications PY - 2018 SP - 591 EP - 601 VL - 11 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.05.01/ DO - 10.22436/jnsa.011.05.01 LA - en ID - JNSA_2018_11_5_a0 ER -
%0 Journal Article %A Wang, Da-Bin %A Ma, Lu-Ping %A Guan, Wen %A Wu, Hong-Mei %T Existence of solutions for Schrödinger-Poisson system with asymptotically periodic terms %J Journal of nonlinear sciences and its applications %D 2018 %P 591-601 %V 11 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.05.01/ %R 10.22436/jnsa.011.05.01 %G en %F JNSA_2018_11_5_a0
Wang, Da-Bin ; Ma, Lu-Ping ; Guan, Wen ; Wu, Hong-Mei . Existence of solutions for Schrödinger-Poisson system with asymptotically periodic terms. Journal of nonlinear sciences and its applications, Tome 11 (2018) no. 5, p. 591-601. doi : 10.22436/jnsa.011.05.01. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.05.01/
[1] Existence of least energy nodal solution for a Schrödinger-Poisson system in bounded domains , Z. Angew. Math. Phys., Volume 65 (2014), pp. 1153-1166 | DOI | Zbl
[2] Schrödinger-Poisson equations without Ambrosetti-Rabinowitz condition, J. Math. Anal. Appl., Volume 377 (2011), pp. 584-592 | DOI | Zbl
[3] Semiclassical states of nonlinear Schrödinger equations, Arch. Rational Mech. Anal., Volume 140 (1997), pp. 285-300 | DOI
[4] Dual variational methods in critical point theory and applications, J. Functional Analysis, Volume 14 (1973), pp. 349-381 | DOI
[5] Multiple bound states for the Schrödinger-Poisson equation, Commun. Contemp. Math., Volume 10 (2008), pp. 391-404 | DOI | Zbl
[6] Concentration and compactness in nonlinear Schrödinger-Poisson systemwith a general nonlinearity, J. Differential Equations, Volume 249 (2010), pp. 1746-1763 | DOI
[7] An eigenvalue problem for the Schrödinger-Maxwell equations, Topol. Methods Nonlinear Anal., Volume 11 (1998), pp. 283-293 | DOI | Zbl
[8] Nonlinear scalar field equations. II. Existence of infinitely many solutions, Arch. Rational Mech. Anal., Volume 82 (1983), pp. 347-375 | DOI | Zbl
[9] Positive solutions for some non-autonomous Schrödinger-Poisson systems, J. Differential Equations, Volume 248 (2010), pp. 521-543
[10] A multiplicity result for the nonlinear Schrödinger-Maxwell equations, Commun. Appl. Anal., Volume 7 (2003), pp. 417-423 | Zbl
[11] Solitary waves for nonlinear Klein-Gordon-Maxwell and Schrödinger-Maxwell equations, Proc. Roy. Soc. London Ser. A, Volume 134 (2004), pp. 893-906 | DOI | Zbl
[12] Non-existence results for the coupled Klein-Gordon-Maxwell equations, Adv. Nonlinear Stud., Volume 4 (2004), pp. 307-322 | DOI
[13] On bound states concentrating on spheres for the Maxwell-Schrödinger equation, SIAM J. Math. Anal., Volume 37 (2005), pp. 321-342 | DOI | Zbl
[14] Schrödinger equations with asymptotically periodic terms, Proc. Roy. Soc. Edinburgh Sect. A, Volume 145 (2015), pp. 745-757 | Zbl | DOI
[15] Semi-classical states of nonlinear Schrödinger equations: A variational reduction method, Math. Ann., Volume 324 (2002), pp. 1-32 | DOI | Zbl
[16] Solutions of perturbed Schrödinger equations with critical nonlinearity, Calc. Var. Partial Differential Equations, Volume 30 (2007), pp. 231-249 | DOI
[17] Existence and concentration of ground states for Schrödinger-Poisson equations with critical growth, J. Math. Phys., Volume 2012 (2012 ), pp. 1-19 | Zbl | DOI
[18] Two positive solutions of a class of Schrödinger-Poisson system with indefinite nonlinearity, J. Differential Equations, Volume 255 (2013), pp. 2463-2483 | Zbl | DOI
[19] Sign-changing radial solutions for the Schrödinger-Poisson-Slater problem, Topol. Methods Nonlinear Anal., Volume 41 (2013), pp. 365-385 | Zbl
[20] Singularly perturbed elliptic problems with superlinear or asympotically linear nonlinearities, Calc. Var. Partial Differential Equations, Volume 21 (2004), pp. 287-318 | DOI
[21] Schrödinger-Poisson system with steep potential well , J. Differential Equations, Volume 251 (2011), pp. 582-608 | DOI
[22] On nodal solutions of the nonlinear Schrödinger-Poisson equations, Commun. Contemp. Math., Volume 2012 (2012 ), pp. 1-16 | DOI
[23] Multi-bump solutions for the nonlinear Schrödinger-Poisson system, J. Math. Phys., Volume 2011 (2011 ), pp. 1-19 | DOI
[24] Infinitely many positive solutions for the nonlinear Schrödinger-Poisson system , Commun. Contemp. Math., Volume 12 (2010), pp. 1069-1092 | DOI
[25] An asymptotically periodic Schrödinger equation with indefinite linear part, Commun. Contemp. Math., Volume 4 (2002), pp. 763-776 | DOI | Zbl
[26] Ground states of nonlinear Schrödinger equations with potentials, Ann. Inst. H. Poincaré Anal. Non Linéaire, Volume 23 (2006), pp. 829-837 | DOI
[27] Quasilinear asymptotically periodic elliptic equations with critical growth, Nonlinear Anal., Volume 71 (2009), pp. 2890-2905 | DOI
[28] Multiple semiclassical states for coupled Schrödinger-Poisson equations with critical exponential growth, J. Math. Phys., Volume 2015 (2015), pp. 1-22 | Zbl | DOI
[29] Infinitely many sign-changing solutions for the nonlinear Schrödinger-Poisson system, Ann. Mat. Pura Appl., Volume 195 (2016), pp. 775-794 | DOI | Zbl
[30] Minimax theorems in critical point theory with applications to differential equations, Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, 1986
[31] On a class of nonlinear Schrödinger equations, Z. Angew. Math. Phys., Volume 43 (1992), pp. 270-291 | DOI
[32] The Schrödinger-Poisson equation under the effect of a nonlinear local term, J. Funct. Anal., Volume 237 (2006), pp. 655-674 | Zbl | DOI
[33] A variation of the mountain pass lemma and applications, J. London Math. Soc., Volume 44 (1991), pp. 491-502 | DOI
[34] Existence and asymptotic behavior of sign-changing solutions for the nonlinear Schrödinger-Poisson system in \(R^3\), Z. Angew. Math. Phys., Volume 66 (2015), pp. 3267-3282 | Zbl | DOI
[35] Quasilinear asymptotically periodic Schrödinger equations with subcritical growth, Nonlinear Anal., Volume 72 (2010), pp. 2935-2949 | Zbl | DOI
[36] Quasilinear asymptotically periodic Schrödinger equations with critical growth, Calc. Var. Partial Differential Equations, Volume 39 (2010), pp. 1-33 | DOI | Zbl
[37] Ground state solutions for some Schrödinger-Poisson systems with periodic potentials, J. Differential Equations, Volume 260 (2016), pp. 2119-2149 | Zbl | DOI
[38] Multiplicity of positive solutions for a nonlinear Schrödinger-Poisson system, J. Differential Equations, Volume 260 (2016), pp. 586-627 | DOI
[39] The method of Nehari manifold, Handbook of nonconvex analysis and applications, 597–632, Int. Press, Somerville, MA, 2010
[40] Gound states for Schrödinger-Poisson type systems, Ricerche di Matematica, Volume 60 (2011), pp. 263-297 | DOI
[41] Existence of multi-bump solutions for a semilinear Schrödinger-Poisson system, Nonlinearity, Volume 26 (2013), pp. 1377-1399 | Zbl | DOI
[42] Sign-changing solutions for the nonlinear Schrödinger-Poisson system in, Calc. Var. Partial Differential Equations, Volume 52 (2015), pp. 927-943 | DOI
[43] Minimax Theorems, Birkhäuser Boston, Bosten, 1996
[44] On the existence of solutions for Schrödinger-Maxwell systems in \(R^3\) , Rocky Mountain J. Math., Volume 42 (2012), pp. 1655-1674 | DOI
[45] Positive ground states for asymptotically periodic Schrödinger-Poisson systems, Math. Methods Appl. Sci., Volume 36 (2013), pp. 427-439 | DOI | Zbl
[46] On the existence of solutions for the Schrödinger-Poisson equations, J. Math. Anal. Appl., Volume 346 (2008), pp. 155-169 | DOI
Cité par Sources :