Fourier series of sums of products of $r$-derangement functions
Journal of nonlinear sciences and its applications, Tome 11 (2018) no. 4, p. 575-590.

Voir la notice de l'article provenant de la source International Scientific Research Publications

A derangement is a permutation that has no fixed point and the derangement number $d_m$ is the number of fixed point-free permutations on an $m$ element set. A generalization of the derangement numbers are the $r$-derangement numbers and their natural companions are the $r$-derangement polynomials. In this paper we will study three types of sums of products of $r$-derangement functions and find Fourier series expansions of them. In addition, we will express them in terms of Bernoulli functions. As immediate corollaries to this, we will be able to express the corresponding three types of polynomials as linear combinations of Bernoulli polynomials.
DOI : 10.22436/jnsa.011.04.12
Classification : 11B83, 11B68, 42A16
Keywords: Fourier series, \(r\)-derangement polynomials, Bernoulli polynomials

Kim, Taekyun  1 ; Kim, Dae San  2 ; Kwon, Huck-In  1 ; Jang, Lee-Chae  3

1 Department of Mathematics, Kwangwoon University, Seoul 139-701, S. Korea
2 Department of Mathematics, Sogang University, Seoul 121-742, Republic of Korea
3 Graduate School of Education, Konkuk University, Seoul 143-701, Republic of Korea
@article{JNSA_2018_11_4_a11,
     author = {Kim, Taekyun  and Kim, Dae San  and Kwon, Huck-In  and Jang, Lee-Chae },
     title = {Fourier series of sums of products of \(r\)-derangement functions},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {575-590},
     publisher = {mathdoc},
     volume = {11},
     number = {4},
     year = {2018},
     doi = {10.22436/jnsa.011.04.12},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.04.12/}
}
TY  - JOUR
AU  - Kim, Taekyun 
AU  - Kim, Dae San 
AU  - Kwon, Huck-In 
AU  - Jang, Lee-Chae 
TI  - Fourier series of sums of products of \(r\)-derangement functions
JO  - Journal of nonlinear sciences and its applications
PY  - 2018
SP  - 575
EP  - 590
VL  - 11
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.04.12/
DO  - 10.22436/jnsa.011.04.12
LA  - en
ID  - JNSA_2018_11_4_a11
ER  - 
%0 Journal Article
%A Kim, Taekyun 
%A Kim, Dae San 
%A Kwon, Huck-In 
%A Jang, Lee-Chae 
%T Fourier series of sums of products of \(r\)-derangement functions
%J Journal of nonlinear sciences and its applications
%D 2018
%P 575-590
%V 11
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.04.12/
%R 10.22436/jnsa.011.04.12
%G en
%F JNSA_2018_11_4_a11
Kim, Taekyun ; Kim, Dae San ; Kwon, Huck-In ; Jang, Lee-Chae . Fourier series of sums of products of \(r\)-derangement functions. Journal of nonlinear sciences and its applications, Tome 11 (2018) no. 4, p. 575-590. doi : 10.22436/jnsa.011.04.12. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.04.12/

[1] L. Carlitz The number of derangements of a sequence with given specification, Fibonacci Quart., Volume 16 (1978), pp. 255-258 | Zbl

[2] Clarke, R. J.; Sved, M. Derangements and Bell numbers , Math. Mag., Volume 66 (1993), pp. 299-303 | DOI

[3] P. R. de Montmort Essay d’analyse sur les jeux de hazard , (French) [Essay on the analysis of games of chance], Chelsea Publishing Co., New York, 1980

[4] M. Hassani Derangements and applications , J. Integer Seq., Volume 2003 (2003), pp. 1-8

[5] Kim, T.; D. S. Kim Degenerate Laplace transform and degenerate gamma function , Russ. J. Math. Phys., Volume 24 (2017), pp. 241-248 | DOI | Zbl

[6] Kim, T.; Kim, D. S.; Dolgy, D. V.; J. Kwon Some identities of derangement numbers , Proc. Jangjeon Math. Soc., Volume 21 (2018), pp. 125-141

[7] Kim, D. S.; Kim, T.; H.-I. Kwon Fourier series of r-derangement and higher-order derangement functions , Adv. Stud. Contemp. Math. (Kyungshang), Volume 28 (2018), pp. 1-11 | DOI

[8] I. Mezö A generalization of the derangement numbers (Powerpoint Slides)

[9] Wang, C.; Miska, P.; I. Mezö The r-derangement numbers , Discrete Math., Volume 340 (2017), pp. 1681-1692 | Zbl | DOI

Cité par Sources :