Guaranteed cost control of exponential function projective synchronization of delayed complex dynamical networks with hybrid uncertainties asymmetric coupling delays
Journal of nonlinear sciences and its applications, Tome 11 (2018) no. 4, p. 550-574.

Voir la notice de l'article provenant de la source International Scientific Research Publications

The problem of guaranteed cost control for exponential function projective synchronization (EFPS) for complex dynamical networks with mixed time-varying delays and hybrid uncertainties asymmetric coupling delays, composing of state coupling, time-varying delay coupling, and distributed time-varying delay coupling, is investigated. In this work, the uncertainties coupling configuration matrix need not be symmetric or irreducible. The guaranteed cost control for EFPS of delayed complex dynamical networks is considered via hybrid control with nonlinear and mixed linear feedback controls, including error linear term, time-varying delay error linear term, and distributed time-varying delay error linear term. Based on the construction of improved Lyapunov-Krasovskii functional with the technique of dealing with some integral terms, the new sufficient conditions for the existence of the optimal guaranteed cost control laws are presented in terms of linear matrix inequalities (LMIs). The obtained LMIs can be efficiently solved by standard convex optimization algorithms. Moreover, numerical examples are given to demonstrate the effectiveness of proposed guaranteed cost control for EFPS. The results in this article generalize and improve the corresponding results of the recent works.
DOI : 10.22436/jnsa.011.04.11
Classification : 37N35, 37C75, 93B52
Keywords: Guaranteed cost control, exponential function projective synchronization, complex dynamical networks, hybrid uncertainties asymmetric coupling

Weera, Wajaree  1 ; Botmart, Thongchai  2 ; Niamsup, Piyapong  3 ; Yotha, Narongsak  4

1 Department of Mathematics, University of Pha Yao, Pha Yao 56000, Thailand
2 Department of Mathematics, Khon Kaen University, Khon Kaen 40002, Thailand
3 Department of Mathematics, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
4 Department of Applied Mathematics and Statistics, Rajamangala University of Technology Isan, Nakhon Ratchasima 30000, Thailand
@article{JNSA_2018_11_4_a10,
     author = {Weera, Wajaree  and Botmart, Thongchai  and Niamsup, Piyapong  and Yotha, Narongsak },
     title = {Guaranteed cost control of exponential function projective synchronization of delayed complex dynamical networks with hybrid uncertainties asymmetric coupling delays},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {550-574},
     publisher = {mathdoc},
     volume = {11},
     number = {4},
     year = {2018},
     doi = {10.22436/jnsa.011.04.11},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.04.11/}
}
TY  - JOUR
AU  - Weera, Wajaree 
AU  - Botmart, Thongchai 
AU  - Niamsup, Piyapong 
AU  - Yotha, Narongsak 
TI  - Guaranteed cost control of exponential function projective synchronization of delayed complex dynamical networks with hybrid uncertainties asymmetric coupling delays
JO  - Journal of nonlinear sciences and its applications
PY  - 2018
SP  - 550
EP  - 574
VL  - 11
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.04.11/
DO  - 10.22436/jnsa.011.04.11
LA  - en
ID  - JNSA_2018_11_4_a10
ER  - 
%0 Journal Article
%A Weera, Wajaree 
%A Botmart, Thongchai 
%A Niamsup, Piyapong 
%A Yotha, Narongsak 
%T Guaranteed cost control of exponential function projective synchronization of delayed complex dynamical networks with hybrid uncertainties asymmetric coupling delays
%J Journal of nonlinear sciences and its applications
%D 2018
%P 550-574
%V 11
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.04.11/
%R 10.22436/jnsa.011.04.11
%G en
%F JNSA_2018_11_4_a10
Weera, Wajaree ; Botmart, Thongchai ; Niamsup, Piyapong ; Yotha, Narongsak . Guaranteed cost control of exponential function projective synchronization of delayed complex dynamical networks with hybrid uncertainties asymmetric coupling delays. Journal of nonlinear sciences and its applications, Tome 11 (2018) no. 4, p. 550-574. doi : 10.22436/jnsa.011.04.11. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.04.11/

[1] Abdurahman, A.; Jiang, H.; Z. Teng Function projective synchronization of impulsive neural networks with mixed timevarying delays , Nonlinear Dynam., Volume 78 (2014), pp. 2627-2638 | DOI

[2] Albert, R.; Jeong, H.; Barabási, A.-L. Internet: Diameter of the World-Wide Web, Nature, Volume 401 (1999), pp. 130-131 | DOI

[3] M. N. Alpaslan Palarkçi Robust delay-dependent guaranteed cost controller design for uncertain neutral systems, Appl. Math. Comput., Volume 215 (2009), pp. 2936-2949 | DOI

[4] Botmart, T.; Niamsup, P. Exponential synchronization of complex dynamical network with mixed time-varying and hybrid coupling delays via Intermittent control , Adv. Difference Equ., Volume 2014 (2014 ), pp. 1-33 | DOI

[5] Cai, S.; Lei, X.; Z. Liu Outer synchronization between two hybrid-coupled delayed dynamical networks via aperiodically adaptive intermittent pinning control, Complexity, Volume 21 (2016), pp. 593-605 | DOI

[6] Cao, J.; Chen, G.; P. Li Global synchronization in an array of delayed neural networks with hybrid coupling , IEEE Trans. Syst., Man, Cybern., Volume 38 (2008), pp. 488-498 | DOI

[7] Chang, S.; T. Peng Adaptive guaranteed cost control of systems with uncertain parameters, IEEE Trans. Automatic Control, Volume 17 (1972), pp. 474-483 | DOI

[8] Chen, W.-H.; Guan, Z.-H.; X. Lu Delay-dependent output feedback guaranteed cost control for uncertain time-delay systems, Automatica J. IFAC, Volume 40 (2004), pp. 1263-1268 | Zbl | DOI

[9] Cui, B.; Lou, X. Synchronization of chaotic recurrent neural networks with time-varying delays using nonlinear feedback control, Chaos Solitons & Fractals, Volume 39 (2009), pp. 288-294 | Zbl | DOI

[10] H. Du Function projective synchronization in complex dynamical networks with or without external disturbances via error feedback control, Neurocomputing, Volume 173 (2016), pp. 1443-1449 | DOI

[11] Du, H.; Shi, P.; Lü, N. Function projective synchronization in complex dynamical networks with time delay via hybrid feedback control, Nonlinear Anal. Real World Appl., Volume 14 (2013), pp. 1182-1190 | Zbl | DOI

[12] Faloutsos, M.; Faloutsos, P.; Faloutsos, C. On power-law relationships of the Internet topology , Comput. Commun. Rev., Volume 29 (1999), pp. 251-262 | DOI

[13] Gu, K.; Kharitonov, V. L.; Chen, J. Stability of time-delay system , Birkhäuser Boston, Boston, 2003

[14] He, W.; Qian, F.; Cao, J. Pinning-controlled synchronization of delayed neural networks with distributed-delay coupling via impulsive control, Neural Netw., Volume 85 (2017), pp. 1-9 | DOI

[15] He, P.; Wang, X.-L.; Y. Li Guaranteed cost synchronization of complex networks with uncertainties and time-varying delays, complexity, Volume 21 (2015), pp. 381-395 | DOI

[16] Jeong, H.; Tombor, B.; Albert, R.; Oltvai, Z.; Barabási, A.-L. The large-scale organization of metabolic network, Nature, Volume 407 (2000), pp. 651-653 | DOI

[17] Lee, T. H.; Ji, D. H.; Park, J. H.; H. Y. Jung Decentralized guaranteed cost dynamic control for synchronization of a complex dynamical network with randomly switching topology, Appl. Math. Comput., Volume 219 (2012), pp. 996-1010 | Zbl | DOI

[18] Lee, T. H.; Park, J. H.; Ji, D. H.; Kwon, O. M.; Lee, S. M. Guaranteed cost synchronization of a complex dynamical network via dynamic feedback control , Appl. Math. Comput., Volume 218 (2012), pp. 6469-6481 | DOI | Zbl

[19] Li, B. Pinning adaptive hybrid synchronization of two general complex dynamical networks with mixed coupling , Appl. Math. Model., Volume 40 (2016), pp. 2983-2998 | DOI

[20] Li, S.; Tang, W.; J. Zhang Guaranteed cost control of synchronisation for uncertain complex delayed networks, Internat. J. Systems Sci., Volume 43 (2012), pp. 566-575 | Zbl | DOI

[21] C.-H. Lien Delay-dependent and delay-independent guaranteed cost control for uncertain neutral systems with timevarying delays via LMI approach, Chaos, Solitons & Fractals, Volume 33 (2007), pp. 1017-1027 | DOI

[22] Lu, J.; Ho, D.W. C.; Cao, J. Synchronization in an array of nonlinearly coupled chaotic neural networks with delay coupling, Internat. J. Bifur. Chaos Appl. Sci. Engrg., Volume 18 (2008), pp. 3101-3111 | Zbl | DOI

[23] Luo, Y.-P.; Zhou, B.-F. Guaranteed cost synchronization of complex network systems with delay, Asian J. Control, Volume 17 (2015), pp. 1274-1284 | DOI | Zbl

[24] Ma, T.; Zhang, J.; Zhou, Y.; Wang, H. Adaptive hybrid projective synchronization of two coupled fractional-order complex networks with different sizes, Neurocomputing, Volume 164 (2015), pp. 182-189 | DOI

[25] Niamsup, P.; Botmart, T.; Weera, W. Modified function projective synchronization of complex dynamical networks with mixed time-varying and asymmetric coupling delays via new hybrid pinning adaptive control, Adv. Difference Equ., Volume 2017 (2017), pp. 1-31 | DOI

[26] Park, J. H.; K. Choi Guaranteed cost control of nonlinear neutral systems via memory state feedback, Chaos, Solitons & Fractals, Volume 24 (2005), pp. 183-190 | Zbl | DOI

[27] Park, J. H.; O. Kwon On guaranteed cost control of neutral systems by retarded integral state feedback, Appl. Math. Comput., Volume 165 (2005), pp. 393-404 | Zbl | DOI

[28] G. Rajchakit Delay-dependent optimal guaranteed cost control of stochastic neural networks with interval nondifferentiable time-varying delays, Adv. Difference Equ., Volume 2013 (2013 ), pp. 1-11 | DOI | Zbl

[29] Rakkiyappan, R.; N. Sakthivel Cluster synchronization for TS fuzzy complex networks using pinning control with probabilistic time-varying delays, Complexity, Volume 21 (2015), pp. 59-77 | DOI

[30] Sivaranjani, K.; R. Rakkiyappan Pinning sampled-data synchronization of complex dynamical networks with Markovian jumping and mixed delays using multiple integral approach, Complexity, Volume 21 (2016), pp. 622-632 | DOI

[31] Shi, L.; Zhu, H.; Zhong, S.; Shi, K.; J. Cheng Function projective synchronization of complex networks with asymmetric coupling via adaptive and pinning feedback control, ISA Trans., Volume 65 (2016), pp. 81-87 | DOI

[32] Shi, L.; Zhu, H.; Zhong, S.; Zeng, Y.; Cheng, J. Synchronization for time-varying complex networks based on control, J. Comput. Appl. Math., Volume 301 (2016), pp. 178-187 | DOI

[33] Song, Q.; J. Cao On pinning synchronization of directed and undirected complex dynamical networks, IEEE Trans. Circuits Syst. I. Regul. Pap., Volume 57 (2010), pp. 672-680 | DOI

[34] S. H. Strogatz Exploring complex networks, Nature, Volume 410 (2001), pp. 268-276 | DOI

[35] Wang, D.; Liu, D.; Mu, C.; H. Ma Decentralized guaranteed cost control of interconnected systems with uncertainties: A learning-based optimal control strategy, Neurocomputing, Volume 214 (2016), pp. 297-306 | DOI

[36] Wassrman, S.; Faust, K. Social Network Analysis, Cambridge University Press, Cambridge, 1994

[37] Williams, R. J.; Martinez, N. D. Simple rules yield complex food webs, Nature, Volume 404 (2000), pp. 180-183 | DOI

[38] Wu, Y.; Li, C.; Wu, Y.; Kurths, J. Generalized synchronization between two different complex networks, Commun. Nonlinear Sci. Numer. Simul., Volume 17 (2012), pp. 349-355 | DOI

[39] Wu, Y.; Li, C.; Yang, A.; Song, L.; Wu, Y. Pinning adaptive anti-synchronization between two general complex dynamical networks with non-delayed and delayed coupling, Appl. Math. Comput., Volume 218 (2012), pp. 7445-7452 | Zbl | DOI

[40] Wu, X.; Lu, H. Generalized projective synchronization between two different general complex dynamical networks with delayed coupling, Phys. Lett. A, Volume 374 (2010), pp. 3932-3941 | DOI | Zbl

[41] Xie, C.; Xu, Y.; Tong, D. Synchronization of time varying delayed complex networks via impulsive control, Optik- International Journal for Light and Electron Optics, Volume 125 (2014), pp. 3781-3787 | DOI

[42] Yang, Y.; Cao, J. Exponential synchronization of the complex dynamical networks with a coupling delay and impulsive effects , Nonlinear Anal. Real World Appl., Volume 11 (2010), pp. 1650-1659 | DOI | Zbl

[43] Yu, W.; Chen, G.; Lü, J. On pinning synchronization of complex dynamical networks, Automatica, Volume 45 (2009), pp. 429-435 | DOI

[44] Zhang, R.; Yang, Y.; Xu, Z.; M. Hu Function projective synchronization in drive-c response dynamical network, Phys. Lett. A, Volume 374 (2010), pp. 3025-3038 | DOI

[45] Zhao, Y.-P.; He, P.; Nik, H. Saberi; Ren, J. Robust adaptive synchronization of uncertain complex networks with multiple time-varying coupled delays, Complexity, Volume 20 (2015), pp. 49-60 | DOI

Cité par Sources :