Voir la notice de l'article provenant de la source International Scientific Research Publications
Zhao, Chang-Jian  1
@article{JNSA_2018_11_4_a9, author = {Zhao, Chang-Jian }, title = {On mixed complex intersection bodies}, journal = {Journal of nonlinear sciences and its applications}, pages = {541-549}, publisher = {mathdoc}, volume = {11}, number = {4}, year = {2018}, doi = {10.22436/jnsa.011.04.10}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.04.10/} }
TY - JOUR AU - Zhao, Chang-Jian TI - On mixed complex intersection bodies JO - Journal of nonlinear sciences and its applications PY - 2018 SP - 541 EP - 549 VL - 11 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.04.10/ DO - 10.22436/jnsa.011.04.10 LA - en ID - JNSA_2018_11_4_a9 ER -
Zhao, Chang-Jian . On mixed complex intersection bodies. Journal of nonlinear sciences and its applications, Tome 11 (2018) no. 4, p. 541-549. doi : 10.22436/jnsa.011.04.10. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.04.10/
[1] Volume in terms of concurrent cross-sections, Pacific J. Math., Volume 3 (1953), pp. 1-12 | Zbl | DOI
[2] Stability estimates for star bodies in terms of their intersection bodies, Mathematika, 45, 287–303., 1998 | Zbl | DOI
[3] Convex intersection bodies in three and four dimensions, Mathematika, Volume 46 (1999), pp. 15-27 | DOI
[4] Spherical projections and centrally symmetric sets, Adv. Math., Volume 129 (1997), pp. 301-322 | DOI
[5] A positive answer to the Busemann–Petty problem in three dimensions, Ann. of Math., Volume 140 (1994), pp. 435-447 | DOI | Zbl
[6] Intersection bodies and the Busemann-Petty problem, Trans. Amer. Math. Soc., Volume 342 (1994), pp. 435-445 | DOI
[7] On the Busemann-Petty problem concerning central sections of centrally symmetric convex bodies, Bull. Amer. Math. Soc., Volume 30 (1994), pp. 222-226 | Zbl
[8] Geometric Tomography, Cambridge University Press, Volume Cambridge (1995)
[9] The Brunn-Minkowski inequality, Bull. Amer. Math. Soc., Volume 39 (2002), pp. 355-405 | DOI
[10] An analytic solution to the Busemann-Petty problem , C. R. Acad. Sci. Paris Sér. I Math., Volume 328 (1999), pp. 29-34 | DOI
[11] An analytic solution to the Busemann-Petty problem on sections of convex bodies, Ann. of Math., Volume 149 (1999), pp. 691-703 | DOI | Zbl
[12] Functional analytic characterizations of classes of convex bodies, Math. Z., Volume 222 (1996), pp. 363-381 | DOI | Zbl
[13] Intersection bodies and ellipsoids, Mathematika, Volume 42 (1995), pp. 295-304 | DOI
[14] Convolutions, transforms, and convex bodies, Proc. London Math. Soc., Volume 78 (1999), pp. 77-115 | DOI
[15] Intersection bodies, positive definite distributions, and the Busemann-Petty problem, Amer. J. Math., Volume 120 (1998), pp. 827-840 | DOI | Zbl
[16] Intersection bodies in \(R^4\) , Adv. Math., Volume 136 (1998), pp. 1-14 | DOI
[17] Second derivative test for intersection bodies, Adv. Math., Volume 136 (1998), pp. 15-25 | Zbl | DOI
[18] A functional analytic approach to intersection bodies, Geom. Funct. Anal., Volume 10 (2000), pp. 1507-1526 | DOI | Zbl
[19] Fourier Analysis in Convex Geometry, American Mathematical Society, Providence, 2005 | DOI
[20] Complex Intersection Bodies, J. Lond. Math. Soc., Volume 88 (2013), pp. 538-562 | DOI
[21] Intersection bodies and valuations, Amer. J. Math., Volume 128 (2006), pp. 1409-1428 | DOI
[22] Intersection bodies and dual mixed volumes , Adv. in Math., Volume 71 (1988), pp. 232-261 | DOI
[23] Quotient star bodies, intersection bodies, and star duality, J. Math. Anal. Appl., Volume 232 (1999), pp. 45-60 | DOI | Zbl
[24] Mixed complex intersection bodies, Math. Inequal. Appl., Volume 18 (2015), pp. 419-428 | DOI
[25] A positive solution to the Busemann-Petty problem in \(R^4\) , Ann. of Math., Volume 149 (1999), pp. 535-543 | DOI
[26] Extremal Problems in Convex Bodies Geometry , Dissertation for the Doctoral Degree at Shanghai Univ., Shanghai, 2005
[27] \(L_p\)-mixed intersection bodies , Sci. China, Volume 51 (2008), pp. 2172-2188 | DOI
[28] On intersection and mixed intersection bodies, Geom. Dedicata, Volume 141 (2009), pp. 109-122 | DOI
[29] Brunn-Minkowski inequality for mixed projection bodies, J. Math. Anal. Appl., Volume 301 (2005), pp. 115-123 | DOI
[30] Inequalities for dual quermassintegrals of mixed intersection bodies, Proc. Indian Acad. Sci. Math. Sci., Volume 115 (2005), pp. 79-91 | DOI
Cité par Sources :